Black Lives Matter. Support the Equal Justice Initiative.

Source file src/cmd/compile/internal/dwarfgen/dwarf.go

Documentation: cmd/compile/internal/dwarfgen

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package dwarfgen
     6  
     7  import (
     8  	"bytes"
     9  	"flag"
    10  	"fmt"
    11  	"internal/buildcfg"
    12  	"sort"
    13  
    14  	"cmd/compile/internal/base"
    15  	"cmd/compile/internal/ir"
    16  	"cmd/compile/internal/reflectdata"
    17  	"cmd/compile/internal/ssa"
    18  	"cmd/compile/internal/ssagen"
    19  	"cmd/compile/internal/types"
    20  	"cmd/internal/dwarf"
    21  	"cmd/internal/obj"
    22  	"cmd/internal/objabi"
    23  	"cmd/internal/src"
    24  )
    25  
    26  func Info(fnsym *obj.LSym, infosym *obj.LSym, curfn interface{}) ([]dwarf.Scope, dwarf.InlCalls) {
    27  	fn := curfn.(*ir.Func)
    28  
    29  	if fn.Nname != nil {
    30  		expect := fn.Linksym()
    31  		if fnsym.ABI() == obj.ABI0 {
    32  			expect = fn.LinksymABI(obj.ABI0)
    33  		}
    34  		if fnsym != expect {
    35  			base.Fatalf("unexpected fnsym: %v != %v", fnsym, expect)
    36  		}
    37  	}
    38  
    39  	// Back when there were two different *Funcs for a function, this code
    40  	// was not consistent about whether a particular *Node being processed
    41  	// was an ODCLFUNC or ONAME node. Partly this is because inlined function
    42  	// bodies have no ODCLFUNC node, which was it's own inconsistency.
    43  	// In any event, the handling of the two different nodes for DWARF purposes
    44  	// was subtly different, likely in unintended ways. CL 272253 merged the
    45  	// two nodes' Func fields, so that code sees the same *Func whether it is
    46  	// holding the ODCLFUNC or the ONAME. This resulted in changes in the
    47  	// DWARF output. To preserve the existing DWARF output and leave an
    48  	// intentional change for a future CL, this code does the following when
    49  	// fn.Op == ONAME:
    50  	//
    51  	// 1. Disallow use of createComplexVars in createDwarfVars.
    52  	//    It was not possible to reach that code for an ONAME before,
    53  	//    because the DebugInfo was set only on the ODCLFUNC Func.
    54  	//    Calling into it in the ONAME case causes an index out of bounds panic.
    55  	//
    56  	// 2. Do not populate apdecls. fn.Func.Dcl was in the ODCLFUNC Func,
    57  	//    not the ONAME Func. Populating apdecls for the ONAME case results
    58  	//    in selected being populated after createSimpleVars is called in
    59  	//    createDwarfVars, and then that causes the loop to skip all the entries
    60  	//    in dcl, meaning that the RecordAutoType calls don't happen.
    61  	//
    62  	// These two adjustments keep toolstash -cmp working for now.
    63  	// Deciding the right answer is, as they say, future work.
    64  	//
    65  	// We can tell the difference between the old ODCLFUNC and ONAME
    66  	// cases by looking at the infosym.Name. If it's empty, DebugInfo is
    67  	// being called from (*obj.Link).populateDWARF, which used to use
    68  	// the ODCLFUNC. If it's non-empty (the name will end in $abstract),
    69  	// DebugInfo is being called from (*obj.Link).DwarfAbstractFunc,
    70  	// which used to use the ONAME form.
    71  	isODCLFUNC := infosym.Name == ""
    72  
    73  	var apdecls []*ir.Name
    74  	// Populate decls for fn.
    75  	if isODCLFUNC {
    76  		for _, n := range fn.Dcl {
    77  			if n.Op() != ir.ONAME { // might be OTYPE or OLITERAL
    78  				continue
    79  			}
    80  			switch n.Class {
    81  			case ir.PAUTO:
    82  				if !n.Used() {
    83  					// Text == nil -> generating abstract function
    84  					if fnsym.Func().Text != nil {
    85  						base.Fatalf("debuginfo unused node (AllocFrame should truncate fn.Func.Dcl)")
    86  					}
    87  					continue
    88  				}
    89  			case ir.PPARAM, ir.PPARAMOUT:
    90  			default:
    91  				continue
    92  			}
    93  			apdecls = append(apdecls, n)
    94  			fnsym.Func().RecordAutoType(reflectdata.TypeLinksym(n.Type()))
    95  		}
    96  	}
    97  
    98  	decls, dwarfVars := createDwarfVars(fnsym, isODCLFUNC, fn, apdecls)
    99  
   100  	// For each type referenced by the functions auto vars but not
   101  	// already referenced by a dwarf var, attach an R_USETYPE relocation to
   102  	// the function symbol to insure that the type included in DWARF
   103  	// processing during linking.
   104  	typesyms := []*obj.LSym{}
   105  	for t, _ := range fnsym.Func().Autot {
   106  		typesyms = append(typesyms, t)
   107  	}
   108  	sort.Sort(obj.BySymName(typesyms))
   109  	for _, sym := range typesyms {
   110  		r := obj.Addrel(infosym)
   111  		r.Sym = sym
   112  		r.Type = objabi.R_USETYPE
   113  	}
   114  	fnsym.Func().Autot = nil
   115  
   116  	var varScopes []ir.ScopeID
   117  	for _, decl := range decls {
   118  		pos := declPos(decl)
   119  		varScopes = append(varScopes, findScope(fn.Marks, pos))
   120  	}
   121  
   122  	scopes := assembleScopes(fnsym, fn, dwarfVars, varScopes)
   123  	var inlcalls dwarf.InlCalls
   124  	if base.Flag.GenDwarfInl > 0 {
   125  		inlcalls = assembleInlines(fnsym, dwarfVars)
   126  	}
   127  	return scopes, inlcalls
   128  }
   129  
   130  func declPos(decl *ir.Name) src.XPos {
   131  	return decl.Canonical().Pos()
   132  }
   133  
   134  // createDwarfVars process fn, returning a list of DWARF variables and the
   135  // Nodes they represent.
   136  func createDwarfVars(fnsym *obj.LSym, complexOK bool, fn *ir.Func, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var) {
   137  	// Collect a raw list of DWARF vars.
   138  	var vars []*dwarf.Var
   139  	var decls []*ir.Name
   140  	var selected ir.NameSet
   141  
   142  	if base.Ctxt.Flag_locationlists && base.Ctxt.Flag_optimize && fn.DebugInfo != nil && complexOK {
   143  		decls, vars, selected = createComplexVars(fnsym, fn)
   144  	} else if fn.ABI == obj.ABIInternal && base.Flag.N != 0 && complexOK {
   145  		decls, vars, selected = createABIVars(fnsym, fn, apDecls)
   146  	} else {
   147  		decls, vars, selected = createSimpleVars(fnsym, apDecls)
   148  	}
   149  
   150  	dcl := apDecls
   151  	if fnsym.WasInlined() {
   152  		dcl = preInliningDcls(fnsym)
   153  	}
   154  
   155  	// If optimization is enabled, the list above will typically be
   156  	// missing some of the original pre-optimization variables in the
   157  	// function (they may have been promoted to registers, folded into
   158  	// constants, dead-coded away, etc).  Input arguments not eligible
   159  	// for SSA optimization are also missing.  Here we add back in entries
   160  	// for selected missing vars. Note that the recipe below creates a
   161  	// conservative location. The idea here is that we want to
   162  	// communicate to the user that "yes, there is a variable named X
   163  	// in this function, but no, I don't have enough information to
   164  	// reliably report its contents."
   165  	// For non-SSA-able arguments, however, the correct information
   166  	// is known -- they have a single home on the stack.
   167  	for _, n := range dcl {
   168  		if selected.Has(n) {
   169  			continue
   170  		}
   171  		c := n.Sym().Name[0]
   172  		if c == '.' || n.Type().IsUntyped() {
   173  			continue
   174  		}
   175  		if n.Class == ir.PPARAM && !ssagen.TypeOK(n.Type()) {
   176  			// SSA-able args get location lists, and may move in and
   177  			// out of registers, so those are handled elsewhere.
   178  			// Autos and named output params seem to get handled
   179  			// with VARDEF, which creates location lists.
   180  			// Args not of SSA-able type are treated here; they
   181  			// are homed on the stack in a single place for the
   182  			// entire call.
   183  			vars = append(vars, createSimpleVar(fnsym, n))
   184  			decls = append(decls, n)
   185  			continue
   186  		}
   187  		typename := dwarf.InfoPrefix + types.TypeSymName(n.Type())
   188  		decls = append(decls, n)
   189  		abbrev := dwarf.DW_ABRV_AUTO_LOCLIST
   190  		isReturnValue := (n.Class == ir.PPARAMOUT)
   191  		if n.Class == ir.PPARAM || n.Class == ir.PPARAMOUT {
   192  			abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
   193  		}
   194  		if n.Esc() == ir.EscHeap {
   195  			// The variable in question has been promoted to the heap.
   196  			// Its address is in n.Heapaddr.
   197  			// TODO(thanm): generate a better location expression
   198  		}
   199  		inlIndex := 0
   200  		if base.Flag.GenDwarfInl > 1 {
   201  			if n.InlFormal() || n.InlLocal() {
   202  				inlIndex = posInlIndex(n.Pos()) + 1
   203  				if n.InlFormal() {
   204  					abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
   205  				}
   206  			}
   207  		}
   208  		declpos := base.Ctxt.InnermostPos(n.Pos())
   209  		vars = append(vars, &dwarf.Var{
   210  			Name:          n.Sym().Name,
   211  			IsReturnValue: isReturnValue,
   212  			Abbrev:        abbrev,
   213  			StackOffset:   int32(n.FrameOffset()),
   214  			Type:          base.Ctxt.Lookup(typename),
   215  			DeclFile:      declpos.RelFilename(),
   216  			DeclLine:      declpos.RelLine(),
   217  			DeclCol:       declpos.Col(),
   218  			InlIndex:      int32(inlIndex),
   219  			ChildIndex:    -1,
   220  		})
   221  		// Record go type of to insure that it gets emitted by the linker.
   222  		fnsym.Func().RecordAutoType(reflectdata.TypeLinksym(n.Type()))
   223  	}
   224  
   225  	// Sort decls and vars.
   226  	sortDeclsAndVars(fn, decls, vars)
   227  
   228  	return decls, vars
   229  }
   230  
   231  // sortDeclsAndVars sorts the decl and dwarf var lists according to
   232  // parameter declaration order, so as to insure that when a subprogram
   233  // DIE is emitted, its parameter children appear in declaration order.
   234  // Prior to the advent of the register ABI, sorting by frame offset
   235  // would achieve this; with the register we now need to go back to the
   236  // original function signature.
   237  func sortDeclsAndVars(fn *ir.Func, decls []*ir.Name, vars []*dwarf.Var) {
   238  	paramOrder := make(map[*ir.Name]int)
   239  	idx := 1
   240  	for _, selfn := range types.RecvsParamsResults {
   241  		fsl := selfn(fn.Type()).FieldSlice()
   242  		for _, f := range fsl {
   243  			if n, ok := f.Nname.(*ir.Name); ok {
   244  				paramOrder[n] = idx
   245  				idx++
   246  			}
   247  		}
   248  	}
   249  	sort.Stable(varsAndDecls{decls, vars, paramOrder})
   250  }
   251  
   252  type varsAndDecls struct {
   253  	decls      []*ir.Name
   254  	vars       []*dwarf.Var
   255  	paramOrder map[*ir.Name]int
   256  }
   257  
   258  func (v varsAndDecls) Len() int {
   259  	return len(v.decls)
   260  }
   261  
   262  func (v varsAndDecls) Less(i, j int) bool {
   263  	nameLT := func(ni, nj *ir.Name) bool {
   264  		oi, foundi := v.paramOrder[ni]
   265  		oj, foundj := v.paramOrder[nj]
   266  		if foundi {
   267  			if foundj {
   268  				return oi < oj
   269  			} else {
   270  				return true
   271  			}
   272  		}
   273  		return false
   274  	}
   275  	return nameLT(v.decls[i], v.decls[j])
   276  }
   277  
   278  func (v varsAndDecls) Swap(i, j int) {
   279  	v.vars[i], v.vars[j] = v.vars[j], v.vars[i]
   280  	v.decls[i], v.decls[j] = v.decls[j], v.decls[i]
   281  }
   282  
   283  // Given a function that was inlined at some point during the
   284  // compilation, return a sorted list of nodes corresponding to the
   285  // autos/locals in that function prior to inlining. If this is a
   286  // function that is not local to the package being compiled, then the
   287  // names of the variables may have been "versioned" to avoid conflicts
   288  // with local vars; disregard this versioning when sorting.
   289  func preInliningDcls(fnsym *obj.LSym) []*ir.Name {
   290  	fn := base.Ctxt.DwFixups.GetPrecursorFunc(fnsym).(*ir.Func)
   291  	var rdcl []*ir.Name
   292  	for _, n := range fn.Inl.Dcl {
   293  		c := n.Sym().Name[0]
   294  		// Avoid reporting "_" parameters, since if there are more than
   295  		// one, it can result in a collision later on, as in #23179.
   296  		if unversion(n.Sym().Name) == "_" || c == '.' || n.Type().IsUntyped() {
   297  			continue
   298  		}
   299  		rdcl = append(rdcl, n)
   300  	}
   301  	return rdcl
   302  }
   303  
   304  // createSimpleVars creates a DWARF entry for every variable declared in the
   305  // function, claiming that they are permanently on the stack.
   306  func createSimpleVars(fnsym *obj.LSym, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var, ir.NameSet) {
   307  	var vars []*dwarf.Var
   308  	var decls []*ir.Name
   309  	var selected ir.NameSet
   310  	for _, n := range apDecls {
   311  		if ir.IsAutoTmp(n) {
   312  			continue
   313  		}
   314  
   315  		decls = append(decls, n)
   316  		vars = append(vars, createSimpleVar(fnsym, n))
   317  		selected.Add(n)
   318  	}
   319  	return decls, vars, selected
   320  }
   321  
   322  func createSimpleVar(fnsym *obj.LSym, n *ir.Name) *dwarf.Var {
   323  	var abbrev int
   324  	var offs int64
   325  
   326  	localAutoOffset := func() int64 {
   327  		offs = n.FrameOffset()
   328  		if base.Ctxt.FixedFrameSize() == 0 {
   329  			offs -= int64(types.PtrSize)
   330  		}
   331  		if buildcfg.FramePointerEnabled {
   332  			offs -= int64(types.PtrSize)
   333  		}
   334  		return offs
   335  	}
   336  
   337  	switch n.Class {
   338  	case ir.PAUTO:
   339  		offs = localAutoOffset()
   340  		abbrev = dwarf.DW_ABRV_AUTO
   341  	case ir.PPARAM, ir.PPARAMOUT:
   342  		abbrev = dwarf.DW_ABRV_PARAM
   343  		if n.IsOutputParamInRegisters() {
   344  			offs = localAutoOffset()
   345  		} else {
   346  			offs = n.FrameOffset() + base.Ctxt.FixedFrameSize()
   347  		}
   348  
   349  	default:
   350  		base.Fatalf("createSimpleVar unexpected class %v for node %v", n.Class, n)
   351  	}
   352  
   353  	typename := dwarf.InfoPrefix + types.TypeSymName(n.Type())
   354  	delete(fnsym.Func().Autot, reflectdata.TypeLinksym(n.Type()))
   355  	inlIndex := 0
   356  	if base.Flag.GenDwarfInl > 1 {
   357  		if n.InlFormal() || n.InlLocal() {
   358  			inlIndex = posInlIndex(n.Pos()) + 1
   359  			if n.InlFormal() {
   360  				abbrev = dwarf.DW_ABRV_PARAM
   361  			}
   362  		}
   363  	}
   364  	declpos := base.Ctxt.InnermostPos(declPos(n))
   365  	return &dwarf.Var{
   366  		Name:          n.Sym().Name,
   367  		IsReturnValue: n.Class == ir.PPARAMOUT,
   368  		IsInlFormal:   n.InlFormal(),
   369  		Abbrev:        abbrev,
   370  		StackOffset:   int32(offs),
   371  		Type:          base.Ctxt.Lookup(typename),
   372  		DeclFile:      declpos.RelFilename(),
   373  		DeclLine:      declpos.RelLine(),
   374  		DeclCol:       declpos.Col(),
   375  		InlIndex:      int32(inlIndex),
   376  		ChildIndex:    -1,
   377  	}
   378  }
   379  
   380  // createABIVars creates DWARF variables for functions in which the
   381  // register ABI is enabled but optimization is turned off. It uses a
   382  // hybrid approach in which register-resident input params are
   383  // captured with location lists, and all other vars use the "simple"
   384  // strategy.
   385  func createABIVars(fnsym *obj.LSym, fn *ir.Func, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var, ir.NameSet) {
   386  
   387  	// Invoke createComplexVars to generate dwarf vars for input parameters
   388  	// that are register-allocated according to the ABI rules.
   389  	decls, vars, selected := createComplexVars(fnsym, fn)
   390  
   391  	// Now fill in the remainder of the variables: input parameters
   392  	// that are not register-resident, output parameters, and local
   393  	// variables.
   394  	for _, n := range apDecls {
   395  		if ir.IsAutoTmp(n) {
   396  			continue
   397  		}
   398  		if _, ok := selected[n]; ok {
   399  			// already handled
   400  			continue
   401  		}
   402  
   403  		decls = append(decls, n)
   404  		vars = append(vars, createSimpleVar(fnsym, n))
   405  		selected.Add(n)
   406  	}
   407  
   408  	return decls, vars, selected
   409  }
   410  
   411  // createComplexVars creates recomposed DWARF vars with location lists,
   412  // suitable for describing optimized code.
   413  func createComplexVars(fnsym *obj.LSym, fn *ir.Func) ([]*ir.Name, []*dwarf.Var, ir.NameSet) {
   414  	debugInfo := fn.DebugInfo.(*ssa.FuncDebug)
   415  
   416  	// Produce a DWARF variable entry for each user variable.
   417  	var decls []*ir.Name
   418  	var vars []*dwarf.Var
   419  	var ssaVars ir.NameSet
   420  
   421  	for varID, dvar := range debugInfo.Vars {
   422  		n := dvar
   423  		ssaVars.Add(n)
   424  		for _, slot := range debugInfo.VarSlots[varID] {
   425  			ssaVars.Add(debugInfo.Slots[slot].N)
   426  		}
   427  
   428  		if dvar := createComplexVar(fnsym, fn, ssa.VarID(varID)); dvar != nil {
   429  			decls = append(decls, n)
   430  			vars = append(vars, dvar)
   431  		}
   432  	}
   433  
   434  	return decls, vars, ssaVars
   435  }
   436  
   437  // createComplexVar builds a single DWARF variable entry and location list.
   438  func createComplexVar(fnsym *obj.LSym, fn *ir.Func, varID ssa.VarID) *dwarf.Var {
   439  	debug := fn.DebugInfo.(*ssa.FuncDebug)
   440  	n := debug.Vars[varID]
   441  
   442  	var abbrev int
   443  	switch n.Class {
   444  	case ir.PAUTO:
   445  		abbrev = dwarf.DW_ABRV_AUTO_LOCLIST
   446  	case ir.PPARAM, ir.PPARAMOUT:
   447  		abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
   448  	default:
   449  		return nil
   450  	}
   451  
   452  	gotype := reflectdata.TypeLinksym(n.Type())
   453  	delete(fnsym.Func().Autot, gotype)
   454  	typename := dwarf.InfoPrefix + gotype.Name[len("type."):]
   455  	inlIndex := 0
   456  	if base.Flag.GenDwarfInl > 1 {
   457  		if n.InlFormal() || n.InlLocal() {
   458  			inlIndex = posInlIndex(n.Pos()) + 1
   459  			if n.InlFormal() {
   460  				abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
   461  			}
   462  		}
   463  	}
   464  	declpos := base.Ctxt.InnermostPos(n.Pos())
   465  	dvar := &dwarf.Var{
   466  		Name:          n.Sym().Name,
   467  		IsReturnValue: n.Class == ir.PPARAMOUT,
   468  		IsInlFormal:   n.InlFormal(),
   469  		Abbrev:        abbrev,
   470  		Type:          base.Ctxt.Lookup(typename),
   471  		// The stack offset is used as a sorting key, so for decomposed
   472  		// variables just give it the first one. It's not used otherwise.
   473  		// This won't work well if the first slot hasn't been assigned a stack
   474  		// location, but it's not obvious how to do better.
   475  		StackOffset: ssagen.StackOffset(debug.Slots[debug.VarSlots[varID][0]]),
   476  		DeclFile:    declpos.RelFilename(),
   477  		DeclLine:    declpos.RelLine(),
   478  		DeclCol:     declpos.Col(),
   479  		InlIndex:    int32(inlIndex),
   480  		ChildIndex:  -1,
   481  	}
   482  	list := debug.LocationLists[varID]
   483  	if len(list) != 0 {
   484  		dvar.PutLocationList = func(listSym, startPC dwarf.Sym) {
   485  			debug.PutLocationList(list, base.Ctxt, listSym.(*obj.LSym), startPC.(*obj.LSym))
   486  		}
   487  	}
   488  	return dvar
   489  }
   490  
   491  // RecordFlags records the specified command-line flags to be placed
   492  // in the DWARF info.
   493  func RecordFlags(flags ...string) {
   494  	if base.Ctxt.Pkgpath == "" {
   495  		// We can't record the flags if we don't know what the
   496  		// package name is.
   497  		return
   498  	}
   499  
   500  	type BoolFlag interface {
   501  		IsBoolFlag() bool
   502  	}
   503  	type CountFlag interface {
   504  		IsCountFlag() bool
   505  	}
   506  	var cmd bytes.Buffer
   507  	for _, name := range flags {
   508  		f := flag.Lookup(name)
   509  		if f == nil {
   510  			continue
   511  		}
   512  		getter := f.Value.(flag.Getter)
   513  		if getter.String() == f.DefValue {
   514  			// Flag has default value, so omit it.
   515  			continue
   516  		}
   517  		if bf, ok := f.Value.(BoolFlag); ok && bf.IsBoolFlag() {
   518  			val, ok := getter.Get().(bool)
   519  			if ok && val {
   520  				fmt.Fprintf(&cmd, " -%s", f.Name)
   521  				continue
   522  			}
   523  		}
   524  		if cf, ok := f.Value.(CountFlag); ok && cf.IsCountFlag() {
   525  			val, ok := getter.Get().(int)
   526  			if ok && val == 1 {
   527  				fmt.Fprintf(&cmd, " -%s", f.Name)
   528  				continue
   529  			}
   530  		}
   531  		fmt.Fprintf(&cmd, " -%s=%v", f.Name, getter.Get())
   532  	}
   533  
   534  	// Adds flag to producer string singalling whether regabi is turned on or
   535  	// off.
   536  	// Once regabi is turned on across the board and the relative GOEXPERIMENT
   537  	// knobs no longer exist this code should be removed.
   538  	if buildcfg.Experiment.RegabiArgs {
   539  		cmd.Write([]byte(" regabi"))
   540  	}
   541  
   542  	if cmd.Len() == 0 {
   543  		return
   544  	}
   545  	s := base.Ctxt.Lookup(dwarf.CUInfoPrefix + "producer." + base.Ctxt.Pkgpath)
   546  	s.Type = objabi.SDWARFCUINFO
   547  	// Sometimes (for example when building tests) we can link
   548  	// together two package main archives. So allow dups.
   549  	s.Set(obj.AttrDuplicateOK, true)
   550  	base.Ctxt.Data = append(base.Ctxt.Data, s)
   551  	s.P = cmd.Bytes()[1:]
   552  }
   553  
   554  // RecordPackageName records the name of the package being
   555  // compiled, so that the linker can save it in the compile unit's DIE.
   556  func RecordPackageName() {
   557  	s := base.Ctxt.Lookup(dwarf.CUInfoPrefix + "packagename." + base.Ctxt.Pkgpath)
   558  	s.Type = objabi.SDWARFCUINFO
   559  	// Sometimes (for example when building tests) we can link
   560  	// together two package main archives. So allow dups.
   561  	s.Set(obj.AttrDuplicateOK, true)
   562  	base.Ctxt.Data = append(base.Ctxt.Data, s)
   563  	s.P = []byte(types.LocalPkg.Name)
   564  }
   565  

View as plain text