Black Lives Matter. Support the Equal Justice Initiative.

Text file src/cmd/compile/internal/ssa/gen/generic.rules

Documentation: cmd/compile/internal/ssa/gen

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Simplifications that apply to all backend architectures. As an example, this
     6  // Go source code
     7  //
     8  // y := 0 * x
     9  //
    10  // can be translated into y := 0 without losing any information, which saves a
    11  // pointless multiplication instruction. Other .rules files in this directory
    12  // (for example AMD64.rules) contain rules specific to the architecture in the
    13  // filename. The rules here apply to every architecture.
    14  //
    15  // The code for parsing this file lives in rulegen.go; this file generates
    16  // ssa/rewritegeneric.go.
    17  
    18  // values are specified using the following format:
    19  // (op <type> [auxint] {aux} arg0 arg1 ...)
    20  // the type, aux, and auxint fields are optional
    21  // on the matching side
    22  //  - the type, aux, and auxint fields must match if they are specified.
    23  //  - the first occurrence of a variable defines that variable.  Subsequent
    24  //    uses must match (be == to) the first use.
    25  //  - v is defined to be the value matched.
    26  //  - an additional conditional can be provided after the match pattern with "&&".
    27  // on the generated side
    28  //  - the type of the top-level expression is the same as the one on the left-hand side.
    29  //  - the type of any subexpressions must be specified explicitly (or
    30  //    be specified in the op's type field).
    31  //  - auxint will be 0 if not specified.
    32  //  - aux will be nil if not specified.
    33  
    34  // blocks are specified using the following format:
    35  // (kind controlvalue succ0 succ1 ...)
    36  // controlvalue must be "nil" or a value expression
    37  // succ* fields must be variables
    38  // For now, the generated successors must be a permutation of the matched successors.
    39  
    40  // constant folding
    41  (Trunc16to8  (Const16  [c])) => (Const8   [int8(c)])
    42  (Trunc32to8  (Const32  [c])) => (Const8   [int8(c)])
    43  (Trunc32to16 (Const32  [c])) => (Const16  [int16(c)])
    44  (Trunc64to8  (Const64  [c])) => (Const8   [int8(c)])
    45  (Trunc64to16 (Const64  [c])) => (Const16  [int16(c)])
    46  (Trunc64to32 (Const64  [c])) => (Const32  [int32(c)])
    47  (Cvt64Fto32F (Const64F [c])) => (Const32F [float32(c)])
    48  (Cvt32Fto64F (Const32F [c])) => (Const64F [float64(c)])
    49  (Cvt32to32F  (Const32  [c])) => (Const32F [float32(c)])
    50  (Cvt32to64F  (Const32  [c])) => (Const64F [float64(c)])
    51  (Cvt64to32F  (Const64  [c])) => (Const32F [float32(c)])
    52  (Cvt64to64F  (Const64  [c])) => (Const64F [float64(c)])
    53  (Cvt32Fto32  (Const32F [c])) => (Const32  [int32(c)])
    54  (Cvt32Fto64  (Const32F [c])) => (Const64  [int64(c)])
    55  (Cvt64Fto32  (Const64F [c])) => (Const32  [int32(c)])
    56  (Cvt64Fto64  (Const64F [c])) => (Const64  [int64(c)])
    57  (Round32F x:(Const32F)) => x
    58  (Round64F x:(Const64F)) => x
    59  (CvtBoolToUint8 (ConstBool [false])) => (Const8 [0])
    60  (CvtBoolToUint8 (ConstBool [true])) => (Const8 [1])
    61  
    62  (Trunc16to8  (ZeroExt8to16  x)) => x
    63  (Trunc32to8  (ZeroExt8to32  x)) => x
    64  (Trunc32to16 (ZeroExt8to32  x)) => (ZeroExt8to16  x)
    65  (Trunc32to16 (ZeroExt16to32 x)) => x
    66  (Trunc64to8  (ZeroExt8to64  x)) => x
    67  (Trunc64to16 (ZeroExt8to64  x)) => (ZeroExt8to16  x)
    68  (Trunc64to16 (ZeroExt16to64 x)) => x
    69  (Trunc64to32 (ZeroExt8to64  x)) => (ZeroExt8to32  x)
    70  (Trunc64to32 (ZeroExt16to64 x)) => (ZeroExt16to32 x)
    71  (Trunc64to32 (ZeroExt32to64 x)) => x
    72  (Trunc16to8  (SignExt8to16  x)) => x
    73  (Trunc32to8  (SignExt8to32  x)) => x
    74  (Trunc32to16 (SignExt8to32  x)) => (SignExt8to16  x)
    75  (Trunc32to16 (SignExt16to32 x)) => x
    76  (Trunc64to8  (SignExt8to64  x)) => x
    77  (Trunc64to16 (SignExt8to64  x)) => (SignExt8to16  x)
    78  (Trunc64to16 (SignExt16to64 x)) => x
    79  (Trunc64to32 (SignExt8to64  x)) => (SignExt8to32  x)
    80  (Trunc64to32 (SignExt16to64 x)) => (SignExt16to32 x)
    81  (Trunc64to32 (SignExt32to64 x)) => x
    82  
    83  (ZeroExt8to16  (Const8  [c])) => (Const16 [int16( uint8(c))])
    84  (ZeroExt8to32  (Const8  [c])) => (Const32 [int32( uint8(c))])
    85  (ZeroExt8to64  (Const8  [c])) => (Const64 [int64( uint8(c))])
    86  (ZeroExt16to32 (Const16 [c])) => (Const32 [int32(uint16(c))])
    87  (ZeroExt16to64 (Const16 [c])) => (Const64 [int64(uint16(c))])
    88  (ZeroExt32to64 (Const32 [c])) => (Const64 [int64(uint32(c))])
    89  (SignExt8to16  (Const8  [c])) => (Const16 [int16(c)])
    90  (SignExt8to32  (Const8  [c])) => (Const32 [int32(c)])
    91  (SignExt8to64  (Const8  [c])) => (Const64 [int64(c)])
    92  (SignExt16to32 (Const16 [c])) => (Const32 [int32(c)])
    93  (SignExt16to64 (Const16 [c])) => (Const64 [int64(c)])
    94  (SignExt32to64 (Const32 [c])) => (Const64 [int64(c)])
    95  
    96  (Neg8   (Const8   [c])) => (Const8   [-c])
    97  (Neg16  (Const16  [c])) => (Const16  [-c])
    98  (Neg32  (Const32  [c])) => (Const32  [-c])
    99  (Neg64  (Const64  [c])) => (Const64  [-c])
   100  (Neg32F (Const32F [c])) && c != 0 => (Const32F [-c])
   101  (Neg64F (Const64F [c])) && c != 0 => (Const64F [-c])
   102  
   103  (Add8   (Const8 [c])   (Const8 [d]))   => (Const8  [c+d])
   104  (Add16  (Const16 [c])  (Const16 [d]))  => (Const16 [c+d])
   105  (Add32  (Const32 [c])  (Const32 [d]))  => (Const32 [c+d])
   106  (Add64  (Const64 [c])  (Const64 [d]))  => (Const64 [c+d])
   107  (Add32F (Const32F [c]) (Const32F [d])) && c+d == c+d => (Const32F [c+d])
   108  (Add64F (Const64F [c]) (Const64F [d])) && c+d == c+d => (Const64F [c+d])
   109  (AddPtr <t> x (Const64 [c])) => (OffPtr <t> x [c])
   110  (AddPtr <t> x (Const32 [c])) => (OffPtr <t> x [int64(c)])
   111  
   112  (Sub8   (Const8 [c]) (Const8 [d]))     => (Const8 [c-d])
   113  (Sub16  (Const16 [c]) (Const16 [d]))   => (Const16 [c-d])
   114  (Sub32  (Const32 [c]) (Const32 [d]))   => (Const32 [c-d])
   115  (Sub64  (Const64 [c]) (Const64 [d]))   => (Const64 [c-d])
   116  (Sub32F (Const32F [c]) (Const32F [d])) && c-d == c-d => (Const32F [c-d])
   117  (Sub64F (Const64F [c]) (Const64F [d])) && c-d == c-d => (Const64F [c-d])
   118  
   119  (Mul8   (Const8 [c])   (Const8 [d]))   => (Const8  [c*d])
   120  (Mul16  (Const16 [c])  (Const16 [d]))  => (Const16 [c*d])
   121  (Mul32  (Const32 [c])  (Const32 [d]))  => (Const32 [c*d])
   122  (Mul64  (Const64 [c])  (Const64 [d]))  => (Const64 [c*d])
   123  (Mul32F (Const32F [c]) (Const32F [d])) && c*d == c*d => (Const32F [c*d])
   124  (Mul64F (Const64F [c]) (Const64F [d])) && c*d == c*d => (Const64F [c*d])
   125  
   126  (And8   (Const8 [c])   (Const8 [d]))   => (Const8  [c&d])
   127  (And16  (Const16 [c])  (Const16 [d]))  => (Const16 [c&d])
   128  (And32  (Const32 [c])  (Const32 [d]))  => (Const32 [c&d])
   129  (And64  (Const64 [c])  (Const64 [d]))  => (Const64 [c&d])
   130  
   131  (Or8   (Const8 [c])   (Const8 [d]))   => (Const8  [c|d])
   132  (Or16  (Const16 [c])  (Const16 [d]))  => (Const16 [c|d])
   133  (Or32  (Const32 [c])  (Const32 [d]))  => (Const32 [c|d])
   134  (Or64  (Const64 [c])  (Const64 [d]))  => (Const64 [c|d])
   135  
   136  (Xor8   (Const8 [c])   (Const8 [d]))   => (Const8  [c^d])
   137  (Xor16  (Const16 [c])  (Const16 [d]))  => (Const16 [c^d])
   138  (Xor32  (Const32 [c])  (Const32 [d]))  => (Const32 [c^d])
   139  (Xor64  (Const64 [c])  (Const64 [d]))  => (Const64 [c^d])
   140  
   141  (Ctz64 (Const64 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz64(c))])
   142  (Ctz32 (Const32 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz32(c))])
   143  (Ctz16 (Const16 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz16(c))])
   144  (Ctz8  (Const8  [c])) && config.PtrSize == 4 => (Const32 [int32(ntz8(c))])
   145  
   146  (Ctz64 (Const64 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz64(c))])
   147  (Ctz32 (Const32 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz32(c))])
   148  (Ctz16 (Const16 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz16(c))])
   149  (Ctz8  (Const8  [c])) && config.PtrSize == 8 => (Const64 [int64(ntz8(c))])
   150  
   151  (Div8   (Const8  [c])  (Const8  [d])) && d != 0 => (Const8  [c/d])
   152  (Div16  (Const16 [c])  (Const16 [d])) && d != 0 => (Const16 [c/d])
   153  (Div32  (Const32 [c])  (Const32 [d])) && d != 0 => (Const32 [c/d])
   154  (Div64  (Const64 [c])  (Const64 [d])) && d != 0 => (Const64 [c/d])
   155  (Div8u  (Const8  [c])  (Const8  [d])) && d != 0 => (Const8  [int8(uint8(c)/uint8(d))])
   156  (Div16u (Const16 [c])  (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c)/uint16(d))])
   157  (Div32u (Const32 [c])  (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c)/uint32(d))])
   158  (Div64u (Const64 [c])  (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c)/uint64(d))])
   159  (Div32F (Const32F [c]) (Const32F [d])) && c/d == c/d => (Const32F [c/d])
   160  (Div64F (Const64F [c]) (Const64F [d])) && c/d == c/d => (Const64F [c/d])
   161  (Select0 (Div128u (Const64 [0]) lo y)) => (Div64u lo y)
   162  (Select1 (Div128u (Const64 [0]) lo y)) => (Mod64u lo y)
   163  
   164  (Not (ConstBool [c])) => (ConstBool [!c])
   165  
   166  // Convert x * 1 to x.
   167  (Mul(8|16|32|64)  (Const(8|16|32|64)  [1]) x) => x
   168  
   169  // Convert x * -1 to -x.
   170  (Mul(8|16|32|64)  (Const(8|16|32|64)  [-1]) x) => (Neg(8|16|32|64)  x)
   171  
   172  // Convert multiplication by a power of two to a shift.
   173  (Mul8  <t> n (Const8  [c])) && isPowerOfTwo8(c) => (Lsh8x64  <t> n (Const64 <typ.UInt64> [log8(c)]))
   174  (Mul16 <t> n (Const16 [c])) && isPowerOfTwo16(c) => (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(c)]))
   175  (Mul32 <t> n (Const32 [c])) && isPowerOfTwo32(c) => (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(c)]))
   176  (Mul64 <t> n (Const64 [c])) && isPowerOfTwo64(c) => (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(c)]))
   177  (Mul8  <t> n (Const8  [c])) && t.IsSigned() && isPowerOfTwo8(-c)  => (Neg8  (Lsh8x64  <t> n (Const64 <typ.UInt64> [log8(-c)])))
   178  (Mul16 <t> n (Const16 [c])) && t.IsSigned() && isPowerOfTwo16(-c) => (Neg16 (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(-c)])))
   179  (Mul32 <t> n (Const32 [c])) && t.IsSigned() && isPowerOfTwo32(-c) => (Neg32 (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(-c)])))
   180  (Mul64 <t> n (Const64 [c])) && t.IsSigned() && isPowerOfTwo64(-c) => (Neg64 (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(-c)])))
   181  
   182  (Mod8  (Const8  [c]) (Const8  [d])) && d != 0 => (Const8  [c % d])
   183  (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c % d])
   184  (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c % d])
   185  (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c % d])
   186  
   187  (Mod8u  (Const8 [c])  (Const8  [d])) && d != 0 => (Const8  [int8(uint8(c) % uint8(d))])
   188  (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c) % uint16(d))])
   189  (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c) % uint32(d))])
   190  (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c) % uint64(d))])
   191  
   192  (Lsh64x64  (Const64 [c]) (Const64 [d])) => (Const64 [c << uint64(d)])
   193  (Rsh64x64  (Const64 [c]) (Const64 [d])) => (Const64 [c >> uint64(d)])
   194  (Rsh64Ux64 (Const64 [c]) (Const64 [d])) => (Const64 [int64(uint64(c) >> uint64(d))])
   195  (Lsh32x64  (Const32 [c]) (Const64 [d])) => (Const32 [c << uint64(d)])
   196  (Rsh32x64  (Const32 [c]) (Const64 [d])) => (Const32 [c >> uint64(d)])
   197  (Rsh32Ux64 (Const32 [c]) (Const64 [d])) => (Const32 [int32(uint32(c) >> uint64(d))])
   198  (Lsh16x64  (Const16 [c]) (Const64 [d])) => (Const16 [c << uint64(d)])
   199  (Rsh16x64  (Const16 [c]) (Const64 [d])) => (Const16 [c >> uint64(d)])
   200  (Rsh16Ux64 (Const16 [c]) (Const64 [d])) => (Const16 [int16(uint16(c) >> uint64(d))])
   201  (Lsh8x64   (Const8  [c]) (Const64 [d])) => (Const8  [c << uint64(d)])
   202  (Rsh8x64   (Const8  [c]) (Const64 [d])) => (Const8  [c >> uint64(d)])
   203  (Rsh8Ux64  (Const8  [c]) (Const64 [d])) => (Const8  [int8(uint8(c) >> uint64(d))])
   204  
   205  // Fold IsInBounds when the range of the index cannot exceed the limit.
   206  (IsInBounds (ZeroExt8to32  _) (Const32 [c])) && (1 << 8)  <= c => (ConstBool [true])
   207  (IsInBounds (ZeroExt8to64  _) (Const64 [c])) && (1 << 8)  <= c => (ConstBool [true])
   208  (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c => (ConstBool [true])
   209  (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c => (ConstBool [true])
   210  (IsInBounds x x) => (ConstBool [false])
   211  (IsInBounds                (And8  (Const8  [c]) _)  (Const8  [d])) && 0 <= c && c < d => (ConstBool [true])
   212  (IsInBounds (ZeroExt8to16  (And8  (Const8  [c]) _)) (Const16 [d])) && 0 <= c && int16(c) < d => (ConstBool [true])
   213  (IsInBounds (ZeroExt8to32  (And8  (Const8  [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true])
   214  (IsInBounds (ZeroExt8to64  (And8  (Const8  [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
   215  (IsInBounds                (And16 (Const16 [c]) _)  (Const16 [d])) && 0 <= c && c < d => (ConstBool [true])
   216  (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true])
   217  (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
   218  (IsInBounds                (And32 (Const32 [c]) _)  (Const32 [d])) && 0 <= c && c < d => (ConstBool [true])
   219  (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
   220  (IsInBounds                (And64 (Const64 [c]) _)  (Const64 [d])) && 0 <= c && c < d => (ConstBool [true])
   221  (IsInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c < d])
   222  (IsInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c < d])
   223  // (Mod64u x y) is always between 0 (inclusive) and y (exclusive).
   224  (IsInBounds (Mod32u _ y) y) => (ConstBool [true])
   225  (IsInBounds (Mod64u _ y) y) => (ConstBool [true])
   226  // Right shifting an unsigned number limits its value.
   227  (IsInBounds (ZeroExt8to64  (Rsh8Ux64  _ (Const64 [c]))) (Const64 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
   228  (IsInBounds (ZeroExt8to32  (Rsh8Ux64  _ (Const64 [c]))) (Const32 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
   229  (IsInBounds (ZeroExt8to16  (Rsh8Ux64  _ (Const64 [c]))) (Const16 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
   230  (IsInBounds                (Rsh8Ux64  _ (Const64 [c]))  (Const64 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
   231  (IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
   232  (IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
   233  (IsInBounds                (Rsh16Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
   234  (IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true])
   235  (IsInBounds                (Rsh32Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true])
   236  (IsInBounds                (Rsh64Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 64 && 1<<uint(64-c)-1 < d => (ConstBool [true])
   237  
   238  (IsSliceInBounds x x) => (ConstBool [true])
   239  (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d => (ConstBool [true])
   240  (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d => (ConstBool [true])
   241  (IsSliceInBounds (Const32 [0]) _) => (ConstBool [true])
   242  (IsSliceInBounds (Const64 [0]) _) => (ConstBool [true])
   243  (IsSliceInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c <= d])
   244  (IsSliceInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c <= d])
   245  (IsSliceInBounds (SliceLen x) (SliceCap x)) => (ConstBool [true])
   246  
   247  (Eq(64|32|16|8) x x) => (ConstBool [true])
   248  (EqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c == d])
   249  (EqB (ConstBool [false]) x) => (Not x)
   250  (EqB (ConstBool [true]) x) => x
   251  
   252  (Neq(64|32|16|8) x x) => (ConstBool [false])
   253  (NeqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c != d])
   254  (NeqB (ConstBool [false]) x) => x
   255  (NeqB (ConstBool [true]) x) => (Not x)
   256  (NeqB (Not x) (Not y)) => (NeqB x y)
   257  
   258  (Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Eq64 (Const64 <t> [c-d]) x)
   259  (Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Eq32 (Const32 <t> [c-d]) x)
   260  (Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Eq16 (Const16 <t> [c-d]) x)
   261  (Eq8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) => (Eq8  (Const8  <t> [c-d]) x)
   262  
   263  (Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Neq64 (Const64 <t> [c-d]) x)
   264  (Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Neq32 (Const32 <t> [c-d]) x)
   265  (Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Neq16 (Const16 <t> [c-d]) x)
   266  (Neq8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) => (Neq8  (Const8  <t> [c-d]) x)
   267  
   268  // signed integer range: ( c <= x && x (<|<=) d ) -> ( unsigned(x-c) (<|<=) unsigned(d-c) )
   269  (AndB (Leq64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c]))
   270  (AndB (Leq32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c]))
   271  (AndB (Leq16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c]))
   272  (AndB (Leq8  (Const8  [c]) x) ((Less|Leq)8  x (Const8  [d]))) && d >= c => ((Less|Leq)8U  (Sub8  <x.Type> x (Const8  <x.Type> [c])) (Const8  <x.Type> [d-c]))
   273  
   274  // signed integer range: ( c < x && x (<|<=) d ) -> ( unsigned(x-(c+1)) (<|<=) unsigned(d-(c+1)) )
   275  (AndB (Less64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1]))
   276  (AndB (Less32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1]))
   277  (AndB (Less16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1]))
   278  (AndB (Less8  (Const8  [c]) x) ((Less|Leq)8  x (Const8  [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)8U  (Sub8  <x.Type> x (Const8  <x.Type> [c+1])) (Const8  <x.Type> [d-c-1]))
   279  
   280  // unsigned integer range: ( c <= x && x (<|<=) d ) -> ( x-c (<|<=) d-c )
   281  (AndB (Leq64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c]))
   282  (AndB (Leq32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c]))
   283  (AndB (Leq16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c]))
   284  (AndB (Leq8U  (Const8  [c]) x) ((Less|Leq)8U  x (Const8  [d]))) && uint8(d)  >= uint8(c)  => ((Less|Leq)8U  (Sub8  <x.Type> x (Const8  <x.Type> [c])) (Const8  <x.Type> [d-c]))
   285  
   286  // unsigned integer range: ( c < x && x (<|<=) d ) -> ( x-(c+1) (<|<=) d-(c+1) )
   287  (AndB (Less64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c+1) && uint64(c+1) > uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1]))
   288  (AndB (Less32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c+1) && uint32(c+1) > uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1]))
   289  (AndB (Less16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c+1) && uint16(c+1) > uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1]))
   290  (AndB (Less8U  (Const8  [c]) x) ((Less|Leq)8U  x (Const8  [d]))) && uint8(d)  >= uint8(c+1)  && uint8(c+1)  > uint8(c)  => ((Less|Leq)8U  (Sub8  <x.Type> x (Const8  <x.Type> [c+1]))  (Const8  <x.Type> [d-c-1]))
   291  
   292  // signed integer range: ( c (<|<=) x || x < d ) -> ( unsigned(c-d) (<|<=) unsigned(x-d) )
   293  (OrB ((Less|Leq)64 (Const64 [c]) x) (Less64 x (Const64 [d]))) && c >= d => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d])))
   294  (OrB ((Less|Leq)32 (Const32 [c]) x) (Less32 x (Const32 [d]))) && c >= d => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d])))
   295  (OrB ((Less|Leq)16 (Const16 [c]) x) (Less16 x (Const16 [d]))) && c >= d => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d])))
   296  (OrB ((Less|Leq)8  (Const8  [c]) x) (Less8  x (Const8  [d]))) && c >= d => ((Less|Leq)8U  (Const8  <x.Type> [c-d]) (Sub8  <x.Type> x (Const8  <x.Type> [d])))
   297  
   298  // signed integer range: ( c (<|<=) x || x <= d ) -> ( unsigned(c-(d+1)) (<|<=) unsigned(x-(d+1)) )
   299  (OrB ((Less|Leq)64 (Const64 [c]) x) (Leq64 x (Const64 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1])))
   300  (OrB ((Less|Leq)32 (Const32 [c]) x) (Leq32 x (Const32 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1])))
   301  (OrB ((Less|Leq)16 (Const16 [c]) x) (Leq16 x (Const16 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1])))
   302  (OrB ((Less|Leq)8  (Const8  [c]) x) (Leq8  x (Const8  [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)8U  (Const8  <x.Type> [c-d-1]) (Sub8  <x.Type> x (Const8  <x.Type> [d+1])))
   303  
   304  // unsigned integer range: ( c (<|<=) x || x < d ) -> ( c-d (<|<=) x-d )
   305  (OrB ((Less|Leq)64U (Const64 [c]) x) (Less64U x (Const64 [d]))) && uint64(c) >= uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d])))
   306  (OrB ((Less|Leq)32U (Const32 [c]) x) (Less32U x (Const32 [d]))) && uint32(c) >= uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d])))
   307  (OrB ((Less|Leq)16U (Const16 [c]) x) (Less16U x (Const16 [d]))) && uint16(c) >= uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d])))
   308  (OrB ((Less|Leq)8U  (Const8  [c]) x) (Less8U  x (Const8  [d]))) && uint8(c)  >= uint8(d)  => ((Less|Leq)8U  (Const8  <x.Type> [c-d]) (Sub8  <x.Type> x (Const8  <x.Type> [d])))
   309  
   310  // unsigned integer range: ( c (<|<=) x || x <= d ) -> ( c-(d+1) (<|<=) x-(d+1) )
   311  (OrB ((Less|Leq)64U (Const64 [c]) x) (Leq64U x (Const64 [d]))) && uint64(c) >= uint64(d+1) && uint64(d+1) > uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1])))
   312  (OrB ((Less|Leq)32U (Const32 [c]) x) (Leq32U x (Const32 [d]))) && uint32(c) >= uint32(d+1) && uint32(d+1) > uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1])))
   313  (OrB ((Less|Leq)16U (Const16 [c]) x) (Leq16U x (Const16 [d]))) && uint16(c) >= uint16(d+1) && uint16(d+1) > uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1])))
   314  (OrB ((Less|Leq)8U  (Const8  [c]) x) (Leq8U  x (Const8  [d]))) && uint8(c)  >= uint8(d+1)  && uint8(d+1)  > uint8(d)  => ((Less|Leq)8U  (Const8  <x.Type> [c-d-1]) (Sub8  <x.Type> x (Const8  <x.Type> [d+1])))
   315  
   316  // Canonicalize x-const to x+(-const)
   317  (Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 => (Add64 (Const64 <t> [-c]) x)
   318  (Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 => (Add32 (Const32 <t> [-c]) x)
   319  (Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 => (Add16 (Const16 <t> [-c]) x)
   320  (Sub8  x (Const8  <t> [c])) && x.Op != OpConst8  => (Add8  (Const8  <t> [-c]) x)
   321  
   322  // fold negation into comparison operators
   323  (Not (Eq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Neq(64|32|16|8|B|Ptr|64F|32F) x y)
   324  (Not (Neq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Eq(64|32|16|8|B|Ptr|64F|32F) x y)
   325  
   326  (Not (Less(64|32|16|8) x y)) => (Leq(64|32|16|8) y x)
   327  (Not (Less(64|32|16|8)U x y)) => (Leq(64|32|16|8)U y x)
   328  (Not (Leq(64|32|16|8) x y)) => (Less(64|32|16|8) y x)
   329  (Not (Leq(64|32|16|8)U x y)) => (Less(64|32|16|8)U y x)
   330  
   331  // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for:
   332  // a[i].b = ...; a[i+1].b = ...
   333  (Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) =>
   334    (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x))
   335  (Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) =>
   336    (Add32 (Const32 <t> [c*d]) (Mul32 <t> (Const32 <t> [c]) x))
   337  
   338  // Rewrite x*y ± x*z  to  x*(y±z)
   339  (Add(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z))
   340  	=> (Mul(64|32|16|8) x (Add(64|32|16|8) <t> y z))
   341  (Sub(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z))
   342  	=> (Mul(64|32|16|8) x (Sub(64|32|16|8) <t> y z))
   343  
   344  // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce
   345  // the number of the other rewrite rules for const shifts
   346  (Lsh64x32  <t> x (Const32 [c])) => (Lsh64x64  x (Const64 <t> [int64(uint32(c))]))
   347  (Lsh64x16  <t> x (Const16 [c])) => (Lsh64x64  x (Const64 <t> [int64(uint16(c))]))
   348  (Lsh64x8   <t> x (Const8  [c])) => (Lsh64x64  x (Const64 <t> [int64(uint8(c))]))
   349  (Rsh64x32  <t> x (Const32 [c])) => (Rsh64x64  x (Const64 <t> [int64(uint32(c))]))
   350  (Rsh64x16  <t> x (Const16 [c])) => (Rsh64x64  x (Const64 <t> [int64(uint16(c))]))
   351  (Rsh64x8   <t> x (Const8  [c])) => (Rsh64x64  x (Const64 <t> [int64(uint8(c))]))
   352  (Rsh64Ux32 <t> x (Const32 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))]))
   353  (Rsh64Ux16 <t> x (Const16 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))]))
   354  (Rsh64Ux8  <t> x (Const8  [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))]))
   355  
   356  (Lsh32x32  <t> x (Const32 [c])) => (Lsh32x64  x (Const64 <t> [int64(uint32(c))]))
   357  (Lsh32x16  <t> x (Const16 [c])) => (Lsh32x64  x (Const64 <t> [int64(uint16(c))]))
   358  (Lsh32x8   <t> x (Const8  [c])) => (Lsh32x64  x (Const64 <t> [int64(uint8(c))]))
   359  (Rsh32x32  <t> x (Const32 [c])) => (Rsh32x64  x (Const64 <t> [int64(uint32(c))]))
   360  (Rsh32x16  <t> x (Const16 [c])) => (Rsh32x64  x (Const64 <t> [int64(uint16(c))]))
   361  (Rsh32x8   <t> x (Const8  [c])) => (Rsh32x64  x (Const64 <t> [int64(uint8(c))]))
   362  (Rsh32Ux32 <t> x (Const32 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))]))
   363  (Rsh32Ux16 <t> x (Const16 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))]))
   364  (Rsh32Ux8  <t> x (Const8  [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))]))
   365  
   366  (Lsh16x32  <t> x (Const32 [c])) => (Lsh16x64  x (Const64 <t> [int64(uint32(c))]))
   367  (Lsh16x16  <t> x (Const16 [c])) => (Lsh16x64  x (Const64 <t> [int64(uint16(c))]))
   368  (Lsh16x8   <t> x (Const8  [c])) => (Lsh16x64  x (Const64 <t> [int64(uint8(c))]))
   369  (Rsh16x32  <t> x (Const32 [c])) => (Rsh16x64  x (Const64 <t> [int64(uint32(c))]))
   370  (Rsh16x16  <t> x (Const16 [c])) => (Rsh16x64  x (Const64 <t> [int64(uint16(c))]))
   371  (Rsh16x8   <t> x (Const8  [c])) => (Rsh16x64  x (Const64 <t> [int64(uint8(c))]))
   372  (Rsh16Ux32 <t> x (Const32 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))]))
   373  (Rsh16Ux16 <t> x (Const16 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))]))
   374  (Rsh16Ux8  <t> x (Const8  [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))]))
   375  
   376  (Lsh8x32  <t> x (Const32 [c])) => (Lsh8x64  x (Const64 <t> [int64(uint32(c))]))
   377  (Lsh8x16  <t> x (Const16 [c])) => (Lsh8x64  x (Const64 <t> [int64(uint16(c))]))
   378  (Lsh8x8   <t> x (Const8  [c])) => (Lsh8x64  x (Const64 <t> [int64(uint8(c))]))
   379  (Rsh8x32  <t> x (Const32 [c])) => (Rsh8x64  x (Const64 <t> [int64(uint32(c))]))
   380  (Rsh8x16  <t> x (Const16 [c])) => (Rsh8x64  x (Const64 <t> [int64(uint16(c))]))
   381  (Rsh8x8   <t> x (Const8  [c])) => (Rsh8x64  x (Const64 <t> [int64(uint8(c))]))
   382  (Rsh8Ux32 <t> x (Const32 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))]))
   383  (Rsh8Ux16 <t> x (Const16 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))]))
   384  (Rsh8Ux8  <t> x (Const8  [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))]))
   385  
   386  // shifts by zero
   387  (Lsh(64|32|16|8)x64  x (Const64 [0])) => x
   388  (Rsh(64|32|16|8)x64  x (Const64 [0])) => x
   389  (Rsh(64|32|16|8)Ux64 x (Const64 [0])) => x
   390  
   391  // rotates by multiples of register width
   392  (RotateLeft64 x (Const64 [c])) && c%64 == 0 => x
   393  (RotateLeft32 x (Const32 [c])) && c%32 == 0 => x
   394  (RotateLeft16 x (Const16 [c])) && c%16 == 0 => x
   395  (RotateLeft8  x (Const8 [c]))  && c%8  == 0 => x
   396  
   397  // zero shifted
   398  (Lsh64x(64|32|16|8)  (Const64 [0]) _) => (Const64 [0])
   399  (Rsh64x(64|32|16|8)  (Const64 [0]) _) => (Const64 [0])
   400  (Rsh64Ux(64|32|16|8) (Const64 [0]) _) => (Const64 [0])
   401  (Lsh32x(64|32|16|8)  (Const32 [0]) _) => (Const32 [0])
   402  (Rsh32x(64|32|16|8)  (Const32 [0]) _) => (Const32 [0])
   403  (Rsh32Ux(64|32|16|8) (Const32 [0]) _) => (Const32 [0])
   404  (Lsh16x(64|32|16|8)  (Const16 [0]) _) => (Const16 [0])
   405  (Rsh16x(64|32|16|8)  (Const16 [0]) _) => (Const16 [0])
   406  (Rsh16Ux(64|32|16|8) (Const16 [0]) _) => (Const16 [0])
   407  (Lsh8x(64|32|16|8)   (Const8  [0]) _) => (Const8  [0])
   408  (Rsh8x(64|32|16|8)   (Const8  [0]) _) => (Const8  [0])
   409  (Rsh8Ux(64|32|16|8)  (Const8  [0]) _) => (Const8  [0])
   410  
   411  // large left shifts of all values, and right shifts of unsigned values
   412  ((Lsh64|Rsh64U)x64  _ (Const64 [c])) && uint64(c) >= 64 => (Const64 [0])
   413  ((Lsh32|Rsh32U)x64  _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0])
   414  ((Lsh16|Rsh16U)x64  _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0])
   415  ((Lsh8|Rsh8U)x64    _ (Const64 [c])) && uint64(c) >= 8  => (Const8  [0])
   416  
   417  // combine const shifts
   418  (Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh64x64 x (Const64 <t> [c+d]))
   419  (Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh32x64 x (Const64 <t> [c+d]))
   420  (Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh16x64 x (Const64 <t> [c+d]))
   421  (Lsh8x64  <t> (Lsh8x64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh8x64  x (Const64 <t> [c+d]))
   422  
   423  (Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64x64 x (Const64 <t> [c+d]))
   424  (Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32x64 x (Const64 <t> [c+d]))
   425  (Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16x64 x (Const64 <t> [c+d]))
   426  (Rsh8x64  <t> (Rsh8x64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8x64  x (Const64 <t> [c+d]))
   427  
   428  (Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64Ux64 x (Const64 <t> [c+d]))
   429  (Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32Ux64 x (Const64 <t> [c+d]))
   430  (Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16Ux64 x (Const64 <t> [c+d]))
   431  (Rsh8Ux64  <t> (Rsh8Ux64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8Ux64  x (Const64 <t> [c+d]))
   432  
   433  // Remove signed right shift before an unsigned right shift that extracts the sign bit.
   434  (Rsh8Ux64  (Rsh8x64  x _) (Const64 <t> [7] )) => (Rsh8Ux64  x (Const64 <t> [7] ))
   435  (Rsh16Ux64 (Rsh16x64 x _) (Const64 <t> [15])) => (Rsh16Ux64 x (Const64 <t> [15]))
   436  (Rsh32Ux64 (Rsh32x64 x _) (Const64 <t> [31])) => (Rsh32Ux64 x (Const64 <t> [31]))
   437  (Rsh64Ux64 (Rsh64x64 x _) (Const64 <t> [63])) => (Rsh64Ux64 x (Const64 <t> [63]))
   438  
   439  // ((x >> c1) << c2) >> c3
   440  (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
   441    && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
   442    => (Rsh(64|32|16|8)Ux64 x (Const64 <typ.UInt64> [c1-c2+c3]))
   443  
   444  // ((x << c1) >> c2) << c3
   445  (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
   446    && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
   447    => (Lsh(64|32|16|8)x64 x (Const64 <typ.UInt64> [c1-c2+c3]))
   448  
   449  // (x >> c) & uppermask = 0
   450  (And64 (Const64 [m]) (Rsh64Ux64 _ (Const64 [c]))) && c >= int64(64-ntz64(m)) => (Const64 [0])
   451  (And32 (Const32 [m]) (Rsh32Ux64 _ (Const64 [c]))) && c >= int64(32-ntz32(m)) => (Const32 [0])
   452  (And16 (Const16 [m]) (Rsh16Ux64 _ (Const64 [c]))) && c >= int64(16-ntz16(m)) => (Const16 [0])
   453  (And8  (Const8  [m]) (Rsh8Ux64  _ (Const64 [c]))) && c >= int64(8-ntz8(m))  => (Const8  [0])
   454  
   455  // (x << c) & lowermask = 0
   456  (And64 (Const64 [m]) (Lsh64x64  _ (Const64 [c]))) && c >= int64(64-nlz64(m)) => (Const64 [0])
   457  (And32 (Const32 [m]) (Lsh32x64  _ (Const64 [c]))) && c >= int64(32-nlz32(m)) => (Const32 [0])
   458  (And16 (Const16 [m]) (Lsh16x64  _ (Const64 [c]))) && c >= int64(16-nlz16(m)) => (Const16 [0])
   459  (And8  (Const8  [m]) (Lsh8x64   _ (Const64 [c]))) && c >= int64(8-nlz8(m))  => (Const8  [0])
   460  
   461  // replace shifts with zero extensions
   462  (Rsh16Ux64 (Lsh16x64 x (Const64  [8])) (Const64  [8])) => (ZeroExt8to16  (Trunc16to8  <typ.UInt8>  x))
   463  (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (ZeroExt8to32  (Trunc32to8  <typ.UInt8>  x))
   464  (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (ZeroExt8to64  (Trunc64to8  <typ.UInt8>  x))
   465  (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (ZeroExt16to32 (Trunc32to16 <typ.UInt16> x))
   466  (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (ZeroExt16to64 (Trunc64to16 <typ.UInt16> x))
   467  (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (ZeroExt32to64 (Trunc64to32 <typ.UInt32> x))
   468  
   469  // replace shifts with sign extensions
   470  (Rsh16x64 (Lsh16x64 x (Const64  [8])) (Const64  [8])) => (SignExt8to16  (Trunc16to8  <typ.Int8>  x))
   471  (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (SignExt8to32  (Trunc32to8  <typ.Int8>  x))
   472  (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (SignExt8to64  (Trunc64to8  <typ.Int8>  x))
   473  (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (SignExt16to32 (Trunc32to16 <typ.Int16> x))
   474  (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (SignExt16to64 (Trunc64to16 <typ.Int16> x))
   475  (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (SignExt32to64 (Trunc64to32 <typ.Int32> x))
   476  
   477  // constant comparisons
   478  (Eq(64|32|16|8)   (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c == d])
   479  (Neq(64|32|16|8)  (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c != d])
   480  (Less(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c < d])
   481  (Leq(64|32|16|8)  (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c <= d])
   482  
   483  (Less64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) < uint64(d)])
   484  (Less32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) < uint32(d)])
   485  (Less16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) < uint16(d)])
   486  (Less8U  (Const8  [c]) (Const8  [d])) => (ConstBool [ uint8(c) <  uint8(d)])
   487  
   488  (Leq64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) <= uint64(d)])
   489  (Leq32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) <= uint32(d)])
   490  (Leq16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) <= uint16(d)])
   491  (Leq8U  (Const8  [c]) (Const8  [d])) => (ConstBool [ uint8(c) <=  uint8(d)])
   492  
   493  (Leq8  (Const8  [0]) (And8  _ (Const8  [c]))) && c >= 0 => (ConstBool [true])
   494  (Leq16 (Const16 [0]) (And16 _ (Const16 [c]))) && c >= 0 => (ConstBool [true])
   495  (Leq32 (Const32 [0]) (And32 _ (Const32 [c]))) && c >= 0 => (ConstBool [true])
   496  (Leq64 (Const64 [0]) (And64 _ (Const64 [c]))) && c >= 0 => (ConstBool [true])
   497  
   498  (Leq8  (Const8  [0]) (Rsh8Ux64  _ (Const64 [c]))) && c > 0 => (ConstBool [true])
   499  (Leq16 (Const16 [0]) (Rsh16Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
   500  (Leq32 (Const32 [0]) (Rsh32Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
   501  (Leq64 (Const64 [0]) (Rsh64Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
   502  
   503  // constant floating point comparisons
   504  (Eq32F   (Const32F [c]) (Const32F [d])) => (ConstBool [c == d])
   505  (Eq64F   (Const64F [c]) (Const64F [d])) => (ConstBool [c == d])
   506  (Neq32F  (Const32F [c]) (Const32F [d])) => (ConstBool [c != d])
   507  (Neq64F  (Const64F [c]) (Const64F [d])) => (ConstBool [c != d])
   508  (Less32F (Const32F [c]) (Const32F [d])) => (ConstBool [c < d])
   509  (Less64F (Const64F [c]) (Const64F [d])) => (ConstBool [c < d])
   510  (Leq32F  (Const32F [c]) (Const32F [d])) => (ConstBool [c <= d])
   511  (Leq64F  (Const64F [c]) (Const64F [d])) => (ConstBool [c <= d])
   512  
   513  // simplifications
   514  (Or(64|32|16|8) x x) => x
   515  (Or(64|32|16|8) (Const(64|32|16|8) [0]) x) => x
   516  (Or(64|32|16|8) (Const(64|32|16|8) [-1]) _) => (Const(64|32|16|8) [-1])
   517  
   518  (And(64|32|16|8) x x) => x
   519  (And(64|32|16|8) (Const(64|32|16|8) [-1]) x) => x
   520  (And(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0])
   521  
   522  (Xor(64|32|16|8) x x) => (Const(64|32|16|8) [0])
   523  (Xor(64|32|16|8) (Const(64|32|16|8) [0]) x) => x
   524  
   525  (Add(64|32|16|8) (Const(64|32|16|8) [0]) x) => x
   526  (Sub(64|32|16|8) x x) => (Const(64|32|16|8) [0])
   527  (Mul(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0])
   528  
   529  (Com(64|32|16|8) (Com(64|32|16|8)  x)) => x
   530  (Com(64|32|16|8) (Const(64|32|16|8) [c])) => (Const(64|32|16|8) [^c])
   531  
   532  (Neg(64|32|16|8) (Sub(64|32|16|8) x y)) => (Sub(64|32|16|8) y x)
   533  
   534  // ^(x-1) == ^x+1 == -x
   535  (Add(64|32|16|8) (Const(64|32|16|8) [1]) (Com(64|32|16|8) x)) => (Neg(64|32|16|8) x)
   536  (Com(64|32|16|8) (Add(64|32|16|8) (Const(64|32|16|8) [-1]) x)) => (Neg(64|32|16|8) x)
   537  
   538  // -(-x) == x
   539  (Neg(64|32|16|8) (Neg(64|32|16|8) x)) => x
   540  
   541  // -^x == x+1
   542  (Neg(64|32|16|8) <t> (Com(64|32|16|8) x)) => (Add(64|32|16|8) (Const(64|32|16|8) <t> [1]) x)
   543  
   544  (And(64|32|16|8) x (And(64|32|16|8) x y)) => (And(64|32|16|8) x y)
   545  (Or(64|32|16|8) x (Or(64|32|16|8) x y)) => (Or(64|32|16|8) x y)
   546  (Xor(64|32|16|8) x (Xor(64|32|16|8) x y)) => y
   547  
   548  // Unsigned comparisons to zero.
   549  (Less(64U|32U|16U|8U) _ (Const(64|32|16|8) [0])) => (ConstBool [false])
   550  (Leq(64U|32U|16U|8U) (Const(64|32|16|8) [0]) _)  => (ConstBool [true])
   551  
   552  // Ands clear bits. Ors set bits.
   553  // If a subsequent Or will set all the bits
   554  // that an And cleared, we can skip the And.
   555  // This happens in bitmasking code like:
   556  //   x &^= 3 << shift // clear two old bits
   557  //   x  |= v << shift // set two new bits
   558  // when shift is a small constant and v ends up a constant 3.
   559  (Or8  (And8  x (Const8  [c2])) (Const8  <t> [c1])) && ^(c1 | c2) == 0 => (Or8  (Const8  <t> [c1]) x)
   560  (Or16 (And16 x (Const16 [c2])) (Const16 <t> [c1])) && ^(c1 | c2) == 0 => (Or16 (Const16 <t> [c1]) x)
   561  (Or32 (And32 x (Const32 [c2])) (Const32 <t> [c1])) && ^(c1 | c2) == 0 => (Or32 (Const32 <t> [c1]) x)
   562  (Or64 (And64 x (Const64 [c2])) (Const64 <t> [c1])) && ^(c1 | c2) == 0 => (Or64 (Const64 <t> [c1]) x)
   563  
   564  (Trunc64to8  (And64 (Const64 [y]) x)) && y&0xFF == 0xFF => (Trunc64to8 x)
   565  (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc64to16 x)
   566  (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF => (Trunc64to32 x)
   567  (Trunc32to8  (And32 (Const32 [y]) x)) && y&0xFF == 0xFF => (Trunc32to8 x)
   568  (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc32to16 x)
   569  (Trunc16to8  (And16 (Const16 [y]) x)) && y&0xFF == 0xFF => (Trunc16to8 x)
   570  
   571  (ZeroExt8to64  (Trunc64to8  x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 => x
   572  (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 => x
   573  (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 => x
   574  (ZeroExt8to32  (Trunc32to8  x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 => x
   575  (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 => x
   576  (ZeroExt8to16  (Trunc16to8  x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 => x
   577  
   578  (SignExt8to64  (Trunc64to8  x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 => x
   579  (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 => x
   580  (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 => x
   581  (SignExt8to32  (Trunc32to8  x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 => x
   582  (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 => x
   583  (SignExt8to16  (Trunc16to8  x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 => x
   584  
   585  (Slicemask (Const32 [x])) && x > 0 => (Const32 [-1])
   586  (Slicemask (Const32 [0]))          => (Const32 [0])
   587  (Slicemask (Const64 [x])) && x > 0 => (Const64 [-1])
   588  (Slicemask (Const64 [0]))          => (Const64 [0])
   589  
   590  // simplifications often used for lengths.  e.g. len(s[i:i+5])==5
   591  (Sub(64|32|16|8) (Add(64|32|16|8) x y) x) => y
   592  (Sub(64|32|16|8) (Add(64|32|16|8) x y) y) => x
   593  
   594  // basic phi simplifications
   595  (Phi (Const8  [c]) (Const8  [c])) => (Const8  [c])
   596  (Phi (Const16 [c]) (Const16 [c])) => (Const16 [c])
   597  (Phi (Const32 [c]) (Const32 [c])) => (Const32 [c])
   598  (Phi (Const64 [c]) (Const64 [c])) => (Const64 [c])
   599  
   600  // slice and interface comparisons
   601  // The frontend ensures that we can only compare against nil,
   602  // so we need only compare the first word (interface type or slice ptr).
   603  (EqInter x y)  => (EqPtr  (ITab x) (ITab y))
   604  (NeqInter x y) => (NeqPtr (ITab x) (ITab y))
   605  (EqSlice x y)  => (EqPtr  (SlicePtr x) (SlicePtr y))
   606  (NeqSlice x y) => (NeqPtr (SlicePtr x) (SlicePtr y))
   607  
   608  // Load of store of same address, with compatibly typed value and same size
   609  (Load <t1> p1 (Store {t2} p2 x _))
   610  	&& isSamePtr(p1, p2)
   611  	&& t1.Compare(x.Type) == types.CMPeq
   612  	&& t1.Size() == t2.Size()
   613  	=> x
   614  (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 x _)))
   615  	&& isSamePtr(p1, p3)
   616  	&& t1.Compare(x.Type) == types.CMPeq
   617  	&& t1.Size() == t2.Size()
   618  	&& disjoint(p3, t3.Size(), p2, t2.Size())
   619  	=> x
   620  (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 x _))))
   621  	&& isSamePtr(p1, p4)
   622  	&& t1.Compare(x.Type) == types.CMPeq
   623  	&& t1.Size() == t2.Size()
   624  	&& disjoint(p4, t4.Size(), p2, t2.Size())
   625  	&& disjoint(p4, t4.Size(), p3, t3.Size())
   626  	=> x
   627  (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 x _)))))
   628  	&& isSamePtr(p1, p5)
   629  	&& t1.Compare(x.Type) == types.CMPeq
   630  	&& t1.Size() == t2.Size()
   631  	&& disjoint(p5, t5.Size(), p2, t2.Size())
   632  	&& disjoint(p5, t5.Size(), p3, t3.Size())
   633  	&& disjoint(p5, t5.Size(), p4, t4.Size())
   634  	=> x
   635  
   636  // Pass constants through math.Float{32,64}bits and math.Float{32,64}frombits
   637          (Load <t1> p1 (Store {t2} p2 (Const64  [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitFloat(t1) && !math.IsNaN(math.Float64frombits(uint64(x))) => (Const64F [math.Float64frombits(uint64(x))])
   638          (Load <t1> p1 (Store {t2} p2 (Const32  [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitFloat(t1) && !math.IsNaN(float64(math.Float32frombits(uint32(x)))) => (Const32F [math.Float32frombits(uint32(x))])
   639  (Load <t1> p1 (Store {t2} p2 (Const64F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitInt(t1)   => (Const64  [int64(math.Float64bits(x))])
   640  (Load <t1> p1 (Store {t2} p2 (Const32F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitInt(t1)   => (Const32  [int32(math.Float32bits(x))])
   641  
   642  // Float Loads up to Zeros so they can be constant folded.
   643  (Load <t1> op:(OffPtr [o1] p1)
   644  	(Store {t2} p2 _
   645  		mem:(Zero [n] p3 _)))
   646  	&& o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p3)
   647  	&& fe.CanSSA(t1)
   648  	&& disjoint(op, t1.Size(), p2, t2.Size())
   649  	=> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p3) mem)
   650  (Load <t1> op:(OffPtr [o1] p1)
   651  	(Store {t2} p2 _
   652  		(Store {t3} p3 _
   653  			mem:(Zero [n] p4 _))))
   654  	&& o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p4)
   655  	&& fe.CanSSA(t1)
   656  	&& disjoint(op, t1.Size(), p2, t2.Size())
   657  	&& disjoint(op, t1.Size(), p3, t3.Size())
   658  	=> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p4) mem)
   659  (Load <t1> op:(OffPtr [o1] p1)
   660  	(Store {t2} p2 _
   661  		(Store {t3} p3 _
   662  			(Store {t4} p4 _
   663  				mem:(Zero [n] p5 _)))))
   664  	&& o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p5)
   665  	&& fe.CanSSA(t1)
   666  	&& disjoint(op, t1.Size(), p2, t2.Size())
   667  	&& disjoint(op, t1.Size(), p3, t3.Size())
   668  	&& disjoint(op, t1.Size(), p4, t4.Size())
   669  	=> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p5) mem)
   670  (Load <t1> op:(OffPtr [o1] p1)
   671  	(Store {t2} p2 _
   672  		(Store {t3} p3 _
   673  			(Store {t4} p4 _
   674  				(Store {t5} p5 _
   675  					mem:(Zero [n] p6 _))))))
   676  	&& o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p6)
   677  	&& fe.CanSSA(t1)
   678  	&& disjoint(op, t1.Size(), p2, t2.Size())
   679  	&& disjoint(op, t1.Size(), p3, t3.Size())
   680  	&& disjoint(op, t1.Size(), p4, t4.Size())
   681  	&& disjoint(op, t1.Size(), p5, t5.Size())
   682  	=> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p6) mem)
   683  
   684  // Zero to Load forwarding.
   685  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   686  	&& t1.IsBoolean()
   687  	&& isSamePtr(p1, p2)
   688  	&& n >= o + 1
   689  	=> (ConstBool [false])
   690  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   691  	&& is8BitInt(t1)
   692  	&& isSamePtr(p1, p2)
   693  	&& n >= o + 1
   694  	=> (Const8 [0])
   695  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   696  	&& is16BitInt(t1)
   697  	&& isSamePtr(p1, p2)
   698  	&& n >= o + 2
   699  	=> (Const16 [0])
   700  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   701  	&& is32BitInt(t1)
   702  	&& isSamePtr(p1, p2)
   703  	&& n >= o + 4
   704  	=> (Const32 [0])
   705  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   706  	&& is64BitInt(t1)
   707  	&& isSamePtr(p1, p2)
   708  	&& n >= o + 8
   709  	=> (Const64 [0])
   710  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   711  	&& is32BitFloat(t1)
   712  	&& isSamePtr(p1, p2)
   713  	&& n >= o + 4
   714  	=> (Const32F [0])
   715  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   716  	&& is64BitFloat(t1)
   717  	&& isSamePtr(p1, p2)
   718  	&& n >= o + 8
   719  	=> (Const64F [0])
   720  
   721  // Eliminate stores of values that have just been loaded from the same location.
   722  // We also handle the common case where there are some intermediate stores.
   723  (Store {t1} p1 (Load <t2> p2 mem) mem)
   724  	&& isSamePtr(p1, p2)
   725  	&& t2.Size() == t1.Size()
   726  	=> mem
   727  (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ oldmem))
   728  	&& isSamePtr(p1, p2)
   729  	&& t2.Size() == t1.Size()
   730  	&& disjoint(p1, t1.Size(), p3, t3.Size())
   731  	=> mem
   732  (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ oldmem)))
   733  	&& isSamePtr(p1, p2)
   734  	&& t2.Size() == t1.Size()
   735  	&& disjoint(p1, t1.Size(), p3, t3.Size())
   736  	&& disjoint(p1, t1.Size(), p4, t4.Size())
   737  	=> mem
   738  (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 _ oldmem))))
   739  	&& isSamePtr(p1, p2)
   740  	&& t2.Size() == t1.Size()
   741  	&& disjoint(p1, t1.Size(), p3, t3.Size())
   742  	&& disjoint(p1, t1.Size(), p4, t4.Size())
   743  	&& disjoint(p1, t1.Size(), p5, t5.Size())
   744  	=> mem
   745  
   746  // Don't Store zeros to cleared variables.
   747  (Store {t} (OffPtr [o] p1) x mem:(Zero [n] p2 _))
   748  	&& isConstZero(x)
   749  	&& o >= 0 && t.Size() + o <= n && isSamePtr(p1, p2)
   750  	=> mem
   751  (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Zero [n] p3 _)))
   752  	&& isConstZero(x)
   753  	&& o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p3)
   754  	&& disjoint(op, t1.Size(), p2, t2.Size())
   755  	=> mem
   756  (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Zero [n] p4 _))))
   757  	&& isConstZero(x)
   758  	&& o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p4)
   759  	&& disjoint(op, t1.Size(), p2, t2.Size())
   760  	&& disjoint(op, t1.Size(), p3, t3.Size())
   761  	=> mem
   762  (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Zero [n] p5 _)))))
   763  	&& isConstZero(x)
   764  	&& o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p5)
   765  	&& disjoint(op, t1.Size(), p2, t2.Size())
   766  	&& disjoint(op, t1.Size(), p3, t3.Size())
   767  	&& disjoint(op, t1.Size(), p4, t4.Size())
   768  	=> mem
   769  
   770  // Collapse OffPtr
   771  (OffPtr (OffPtr p [y]) [x]) => (OffPtr p [x+y])
   772  (OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq => p
   773  
   774  // indexing operations
   775  // Note: bounds check has already been done
   776  (PtrIndex <t> ptr idx) && config.PtrSize == 4 && is32Bit(t.Elem().Size()) => (AddPtr ptr (Mul32 <typ.Int> idx (Const32 <typ.Int> [int32(t.Elem().Size())])))
   777  (PtrIndex <t> ptr idx) && config.PtrSize == 8 => (AddPtr ptr (Mul64 <typ.Int> idx (Const64 <typ.Int> [t.Elem().Size()])))
   778  
   779  // struct operations
   780  (StructSelect (StructMake1 x)) => x
   781  (StructSelect [0] (StructMake2 x _)) => x
   782  (StructSelect [1] (StructMake2 _ x)) => x
   783  (StructSelect [0] (StructMake3 x _ _)) => x
   784  (StructSelect [1] (StructMake3 _ x _)) => x
   785  (StructSelect [2] (StructMake3 _ _ x)) => x
   786  (StructSelect [0] (StructMake4 x _ _ _)) => x
   787  (StructSelect [1] (StructMake4 _ x _ _)) => x
   788  (StructSelect [2] (StructMake4 _ _ x _)) => x
   789  (StructSelect [3] (StructMake4 _ _ _ x)) => x
   790  
   791  (Load <t> _ _) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) =>
   792    (StructMake0)
   793  (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) =>
   794    (StructMake1
   795      (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem))
   796  (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) =>
   797    (StructMake2
   798      (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0]             ptr) mem)
   799      (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem))
   800  (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) =>
   801    (StructMake3
   802      (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0]             ptr) mem)
   803      (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)
   804      (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem))
   805  (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) =>
   806    (StructMake4
   807      (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0]             ptr) mem)
   808      (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)
   809      (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem)
   810      (Load <t.FieldType(3)> (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] ptr) mem))
   811  
   812  (StructSelect [i] x:(Load <t> ptr mem)) && !fe.CanSSA(t) =>
   813    @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem)
   814  
   815  (Store _ (StructMake0) mem) => mem
   816  (Store dst (StructMake1 <t> f0) mem) =>
   817    (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem)
   818  (Store dst (StructMake2 <t> f0 f1) mem) =>
   819    (Store {t.FieldType(1)}
   820      (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst)
   821      f1
   822      (Store {t.FieldType(0)}
   823        (OffPtr <t.FieldType(0).PtrTo()> [0] dst)
   824          f0 mem))
   825  (Store dst (StructMake3 <t> f0 f1 f2) mem) =>
   826    (Store {t.FieldType(2)}
   827      (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst)
   828      f2
   829      (Store {t.FieldType(1)}
   830        (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst)
   831        f1
   832        (Store {t.FieldType(0)}
   833          (OffPtr <t.FieldType(0).PtrTo()> [0] dst)
   834            f0 mem)))
   835  (Store dst (StructMake4 <t> f0 f1 f2 f3) mem) =>
   836    (Store {t.FieldType(3)}
   837      (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] dst)
   838      f3
   839      (Store {t.FieldType(2)}
   840        (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst)
   841        f2
   842        (Store {t.FieldType(1)}
   843          (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst)
   844          f1
   845          (Store {t.FieldType(0)}
   846            (OffPtr <t.FieldType(0).PtrTo()> [0] dst)
   847              f0 mem))))
   848  
   849  // Putting struct{*byte} and similar into direct interfaces.
   850  (IMake _typ (StructMake1 val)) => (IMake _typ val)
   851  (StructSelect [0] (IData x)) => (IData x)
   852  
   853  // un-SSAable values use mem->mem copies
   854  (Store {t} dst (Load src mem) mem) && !fe.CanSSA(t) =>
   855  	(Move {t} [t.Size()] dst src mem)
   856  (Store {t} dst (Load src mem) (VarDef {x} mem)) && !fe.CanSSA(t) =>
   857  	(Move {t} [t.Size()] dst src (VarDef {x} mem))
   858  
   859  // array ops
   860  (ArraySelect (ArrayMake1 x)) => x
   861  
   862  (Load <t> _ _) && t.IsArray() && t.NumElem() == 0 =>
   863    (ArrayMake0)
   864  
   865  (Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) =>
   866    (ArrayMake1 (Load <t.Elem()> ptr mem))
   867  
   868  (Store _ (ArrayMake0) mem) => mem
   869  (Store dst (ArrayMake1 e) mem) => (Store {e.Type} dst e mem)
   870  
   871  // Putting [1]*byte and similar into direct interfaces.
   872  (IMake _typ (ArrayMake1 val)) => (IMake _typ val)
   873  (ArraySelect [0] (IData x)) => (IData x)
   874  
   875  // string ops
   876  // Decomposing StringMake and lowering of StringPtr and StringLen
   877  // happens in a later pass, dec, so that these operations are available
   878  // to other passes for optimizations.
   879  (StringPtr (StringMake (Addr <t> {s} base) _)) => (Addr <t> {s} base)
   880  (StringLen (StringMake _ (Const64 <t> [c]))) => (Const64 <t> [c])
   881  (ConstString {str}) && config.PtrSize == 4 && str == "" =>
   882    (StringMake (ConstNil) (Const32 <typ.Int> [0]))
   883  (ConstString {str}) && config.PtrSize == 8 && str == "" =>
   884    (StringMake (ConstNil) (Const64 <typ.Int> [0]))
   885  (ConstString {str}) && config.PtrSize == 4 && str != "" =>
   886    (StringMake
   887      (Addr <typ.BytePtr> {fe.StringData(str)}
   888        (SB))
   889      (Const32 <typ.Int> [int32(len(str))]))
   890  (ConstString {str}) && config.PtrSize == 8 && str != "" =>
   891    (StringMake
   892      (Addr <typ.BytePtr> {fe.StringData(str)}
   893        (SB))
   894      (Const64 <typ.Int> [int64(len(str))]))
   895  
   896  // slice ops
   897  // Only a few slice rules are provided here.  See dec.rules for
   898  // a more comprehensive set.
   899  (SliceLen (SliceMake _ (Const64 <t> [c]) _)) => (Const64 <t> [c])
   900  (SliceCap (SliceMake _ _ (Const64 <t> [c]))) => (Const64 <t> [c])
   901  (SliceLen (SliceMake _ (Const32 <t> [c]) _)) => (Const32 <t> [c])
   902  (SliceCap (SliceMake _ _ (Const32 <t> [c]))) => (Const32 <t> [c])
   903  (SlicePtr (SliceMake (SlicePtr x) _ _)) => (SlicePtr x)
   904  (SliceLen (SliceMake _ (SliceLen x) _)) => (SliceLen x)
   905  (SliceCap (SliceMake _ _ (SliceCap x))) => (SliceCap x)
   906  (SliceCap (SliceMake _ _ (SliceLen x))) => (SliceLen x)
   907  (ConstSlice) && config.PtrSize == 4 =>
   908    (SliceMake
   909      (ConstNil <v.Type.Elem().PtrTo()>)
   910      (Const32 <typ.Int> [0])
   911      (Const32 <typ.Int> [0]))
   912  (ConstSlice) && config.PtrSize == 8 =>
   913    (SliceMake
   914      (ConstNil <v.Type.Elem().PtrTo()>)
   915      (Const64 <typ.Int> [0])
   916      (Const64 <typ.Int> [0]))
   917  
   918  // interface ops
   919  (ConstInterface) =>
   920    (IMake
   921      (ConstNil <typ.Uintptr>)
   922      (ConstNil <typ.BytePtr>))
   923  
   924  (NilCheck (GetG mem) mem) => mem
   925  
   926  (If (Not cond) yes no) => (If cond no yes)
   927  (If (ConstBool [c]) yes no) && c => (First yes no)
   928  (If (ConstBool [c]) yes no) && !c => (First no yes)
   929  
   930  // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer.
   931  (Convert (Add(64|32) (Convert ptr mem) off) mem) => (AddPtr ptr off)
   932  (Convert (Convert ptr mem) mem) => ptr
   933  
   934  // strength reduction of divide by a constant.
   935  // See ../magic.go for a detailed description of these algorithms.
   936  
   937  // Unsigned divide by power of 2.  Strength reduce to a shift.
   938  (Div8u  n (Const8  [c])) && isPowerOfTwo8(c)  => (Rsh8Ux64  n (Const64 <typ.UInt64> [log8(c)]))
   939  (Div16u n (Const16 [c])) && isPowerOfTwo16(c) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16(c)]))
   940  (Div32u n (Const32 [c])) && isPowerOfTwo32(c) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32(c)]))
   941  (Div64u n (Const64 [c])) && isPowerOfTwo64(c) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64(c)]))
   942  (Div64u n (Const64 [-1<<63]))                 => (Rsh64Ux64 n (Const64 <typ.UInt64> [63]))
   943  
   944  // Signed non-negative divide by power of 2.
   945  (Div8  n (Const8  [c])) && isNonNegative(n) && isPowerOfTwo8(c)  => (Rsh8Ux64  n (Const64 <typ.UInt64> [log8(c)]))
   946  (Div16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo16(c) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16(c)]))
   947  (Div32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo32(c) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32(c)]))
   948  (Div64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo64(c) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64(c)]))
   949  (Div64 n (Const64 [-1<<63])) && isNonNegative(n)                 => (Const64 [0])
   950  
   951  // Unsigned divide, not a power of 2.  Strength reduce to a multiply.
   952  // For 8-bit divides, we just do a direct 9-bit by 8-bit multiply.
   953  (Div8u x (Const8 [c])) && umagicOK8(c) =>
   954    (Trunc32to8
   955      (Rsh32Ux64 <typ.UInt32>
   956        (Mul32 <typ.UInt32>
   957          (Const32 <typ.UInt32> [int32(1<<8+umagic8(c).m)])
   958          (ZeroExt8to32 x))
   959        (Const64 <typ.UInt64> [8+umagic8(c).s])))
   960  
   961  // For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply.
   962  (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 8 =>
   963    (Trunc64to16
   964      (Rsh64Ux64 <typ.UInt64>
   965        (Mul64 <typ.UInt64>
   966          (Const64 <typ.UInt64> [int64(1<<16+umagic16(c).m)])
   967          (ZeroExt16to64 x))
   968        (Const64 <typ.UInt64> [16+umagic16(c).s])))
   969  
   970  // For 16-bit divides on 32-bit machines
   971  (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && umagic16(c).m&1 == 0 =>
   972    (Trunc32to16
   973      (Rsh32Ux64 <typ.UInt32>
   974        (Mul32 <typ.UInt32>
   975          (Const32 <typ.UInt32> [int32(1<<15+umagic16(c).m/2)])
   976          (ZeroExt16to32 x))
   977        (Const64 <typ.UInt64> [16+umagic16(c).s-1])))
   978  (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && c&1 == 0 =>
   979    (Trunc32to16
   980      (Rsh32Ux64 <typ.UInt32>
   981        (Mul32 <typ.UInt32>
   982          (Const32 <typ.UInt32> [int32(1<<15+(umagic16(c).m+1)/2)])
   983          (Rsh32Ux64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [1])))
   984        (Const64 <typ.UInt64> [16+umagic16(c).s-2])))
   985  (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && config.useAvg =>
   986    (Trunc32to16
   987      (Rsh32Ux64 <typ.UInt32>
   988        (Avg32u
   989          (Lsh32x64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [16]))
   990          (Mul32 <typ.UInt32>
   991            (Const32 <typ.UInt32> [int32(umagic16(c).m)])
   992            (ZeroExt16to32 x)))
   993        (Const64 <typ.UInt64> [16+umagic16(c).s-1])))
   994  
   995  // For 32-bit divides on 32-bit machines
   996  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && umagic32(c).m&1 == 0 && config.useHmul =>
   997    (Rsh32Ux64 <typ.UInt32>
   998      (Hmul32u <typ.UInt32>
   999        (Const32 <typ.UInt32> [int32(1<<31+umagic32(c).m/2)])
  1000        x)
  1001      (Const64 <typ.UInt64> [umagic32(c).s-1]))
  1002  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && c&1 == 0 && config.useHmul =>
  1003    (Rsh32Ux64 <typ.UInt32>
  1004      (Hmul32u <typ.UInt32>
  1005        (Const32 <typ.UInt32> [int32(1<<31+(umagic32(c).m+1)/2)])
  1006        (Rsh32Ux64 <typ.UInt32> x (Const64 <typ.UInt64> [1])))
  1007      (Const64 <typ.UInt64> [umagic32(c).s-2]))
  1008  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && config.useAvg && config.useHmul =>
  1009    (Rsh32Ux64 <typ.UInt32>
  1010      (Avg32u
  1011        x
  1012        (Hmul32u <typ.UInt32>
  1013          (Const32 <typ.UInt32> [int32(umagic32(c).m)])
  1014          x))
  1015      (Const64 <typ.UInt64> [umagic32(c).s-1]))
  1016  
  1017  // For 32-bit divides on 64-bit machines
  1018  // We'll use a regular (non-hi) multiply for this case.
  1019  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && umagic32(c).m&1 == 0 =>
  1020    (Trunc64to32
  1021      (Rsh64Ux64 <typ.UInt64>
  1022        (Mul64 <typ.UInt64>
  1023          (Const64 <typ.UInt64> [int64(1<<31+umagic32(c).m/2)])
  1024          (ZeroExt32to64 x))
  1025        (Const64 <typ.UInt64> [32+umagic32(c).s-1])))
  1026  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && c&1 == 0 =>
  1027    (Trunc64to32
  1028      (Rsh64Ux64 <typ.UInt64>
  1029        (Mul64 <typ.UInt64>
  1030          (Const64 <typ.UInt64> [int64(1<<31+(umagic32(c).m+1)/2)])
  1031          (Rsh64Ux64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [1])))
  1032        (Const64 <typ.UInt64> [32+umagic32(c).s-2])))
  1033  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && config.useAvg =>
  1034    (Trunc64to32
  1035      (Rsh64Ux64 <typ.UInt64>
  1036        (Avg64u
  1037          (Lsh64x64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [32]))
  1038          (Mul64 <typ.UInt64>
  1039            (Const64 <typ.UInt32> [int64(umagic32(c).m)])
  1040            (ZeroExt32to64 x)))
  1041        (Const64 <typ.UInt64> [32+umagic32(c).s-1])))
  1042  
  1043  // For unsigned 64-bit divides on 32-bit machines,
  1044  // if the constant fits in 16 bits (so that the last term
  1045  // fits in 32 bits), convert to three 32-bit divides by a constant.
  1046  //
  1047  // If 1<<32 = Q * c + R
  1048  // and    x = hi << 32 + lo
  1049  //
  1050  // Then x = (hi/c*c + hi%c) << 32 + lo
  1051  //        = hi/c*c<<32 + hi%c<<32 + lo
  1052  //        = hi/c*c<<32 + (hi%c)*(Q*c+R) + lo/c*c + lo%c
  1053  //        = hi/c*c<<32 + (hi%c)*Q*c + lo/c*c + (hi%c*R+lo%c)
  1054  // and x / c = (hi/c)<<32 + (hi%c)*Q + lo/c + (hi%c*R+lo%c)/c
  1055  (Div64u x (Const64 [c])) && c > 0 && c <= 0xFFFF && umagicOK32(int32(c)) && config.RegSize == 4 && config.useHmul =>
  1056    (Add64
  1057      (Add64 <typ.UInt64>
  1058        (Add64 <typ.UInt64>
  1059          (Lsh64x64 <typ.UInt64>
  1060            (ZeroExt32to64
  1061              (Div32u <typ.UInt32>
  1062                (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32])))
  1063                (Const32 <typ.UInt32> [int32(c)])))
  1064            (Const64 <typ.UInt64> [32]))
  1065          (ZeroExt32to64 (Div32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)]))))
  1066        (Mul64 <typ.UInt64>
  1067          (ZeroExt32to64 <typ.UInt64>
  1068            (Mod32u <typ.UInt32>
  1069              (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32])))
  1070              (Const32 <typ.UInt32> [int32(c)])))
  1071          (Const64 <typ.UInt64> [int64((1<<32)/c)])))
  1072        (ZeroExt32to64
  1073          (Div32u <typ.UInt32>
  1074            (Add32 <typ.UInt32>
  1075              (Mod32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)]))
  1076              (Mul32 <typ.UInt32>
  1077                (Mod32u <typ.UInt32>
  1078                  (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32])))
  1079                  (Const32 <typ.UInt32> [int32(c)]))
  1080                (Const32 <typ.UInt32> [int32((1<<32)%c)])))
  1081            (Const32 <typ.UInt32> [int32(c)]))))
  1082  
  1083  // For 64-bit divides on 64-bit machines
  1084  // (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.)
  1085  (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && umagic64(c).m&1 == 0 && config.useHmul =>
  1086    (Rsh64Ux64 <typ.UInt64>
  1087      (Hmul64u <typ.UInt64>
  1088        (Const64 <typ.UInt64> [int64(1<<63+umagic64(c).m/2)])
  1089        x)
  1090      (Const64 <typ.UInt64> [umagic64(c).s-1]))
  1091  (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && c&1 == 0 && config.useHmul =>
  1092    (Rsh64Ux64 <typ.UInt64>
  1093      (Hmul64u <typ.UInt64>
  1094        (Const64 <typ.UInt64> [int64(1<<63+(umagic64(c).m+1)/2)])
  1095        (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [1])))
  1096      (Const64 <typ.UInt64> [umagic64(c).s-2]))
  1097  (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && config.useAvg && config.useHmul =>
  1098    (Rsh64Ux64 <typ.UInt64>
  1099      (Avg64u
  1100        x
  1101        (Hmul64u <typ.UInt64>
  1102          (Const64 <typ.UInt64> [int64(umagic64(c).m)])
  1103          x))
  1104      (Const64 <typ.UInt64> [umagic64(c).s-1]))
  1105  
  1106  // Signed divide by a negative constant.  Rewrite to divide by a positive constant.
  1107  (Div8  <t> n (Const8  [c])) && c < 0 && c != -1<<7  => (Neg8  (Div8  <t> n (Const8  <t> [-c])))
  1108  (Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Neg16 (Div16 <t> n (Const16 <t> [-c])))
  1109  (Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Neg32 (Div32 <t> n (Const32 <t> [-c])))
  1110  (Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Neg64 (Div64 <t> n (Const64 <t> [-c])))
  1111  
  1112  // Dividing by the most-negative number.  Result is always 0 except
  1113  // if the input is also the most-negative number.
  1114  // We can detect that using the sign bit of x & -x.
  1115  (Div8  <t> x (Const8  [-1<<7 ])) => (Rsh8Ux64  (And8  <t> x (Neg8  <t> x)) (Const64 <typ.UInt64> [7 ]))
  1116  (Div16 <t> x (Const16 [-1<<15])) => (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <typ.UInt64> [15]))
  1117  (Div32 <t> x (Const32 [-1<<31])) => (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <typ.UInt64> [31]))
  1118  (Div64 <t> x (Const64 [-1<<63])) => (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <typ.UInt64> [63]))
  1119  
  1120  // Signed divide by power of 2.
  1121  // n / c =       n >> log(c) if n >= 0
  1122  //       = (n+c-1) >> log(c) if n < 0
  1123  // We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned).
  1124  (Div8  <t> n (Const8  [c])) && isPowerOfTwo8(c) =>
  1125    (Rsh8x64
  1126      (Add8  <t> n (Rsh8Ux64  <t> (Rsh8x64  <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [int64( 8-log8(c))])))
  1127      (Const64 <typ.UInt64> [int64(log8(c))]))
  1128  (Div16 <t> n (Const16 [c])) && isPowerOfTwo16(c) =>
  1129    (Rsh16x64
  1130      (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [int64(16-log16(c))])))
  1131      (Const64 <typ.UInt64> [int64(log16(c))]))
  1132  (Div32 <t> n (Const32 [c])) && isPowerOfTwo32(c) =>
  1133    (Rsh32x64
  1134      (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [int64(32-log32(c))])))
  1135      (Const64 <typ.UInt64> [int64(log32(c))]))
  1136  (Div64 <t> n (Const64 [c])) && isPowerOfTwo64(c) =>
  1137    (Rsh64x64
  1138      (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [int64(64-log64(c))])))
  1139      (Const64 <typ.UInt64> [int64(log64(c))]))
  1140  
  1141  // Signed divide, not a power of 2.  Strength reduce to a multiply.
  1142  (Div8 <t> x (Const8 [c])) && smagicOK8(c) =>
  1143    (Sub8 <t>
  1144      (Rsh32x64 <t>
  1145        (Mul32 <typ.UInt32>
  1146          (Const32 <typ.UInt32> [int32(smagic8(c).m)])
  1147          (SignExt8to32 x))
  1148        (Const64 <typ.UInt64> [8+smagic8(c).s]))
  1149      (Rsh32x64 <t>
  1150        (SignExt8to32 x)
  1151        (Const64 <typ.UInt64> [31])))
  1152  (Div16 <t> x (Const16 [c])) && smagicOK16(c) =>
  1153    (Sub16 <t>
  1154      (Rsh32x64 <t>
  1155        (Mul32 <typ.UInt32>
  1156          (Const32 <typ.UInt32> [int32(smagic16(c).m)])
  1157          (SignExt16to32 x))
  1158        (Const64 <typ.UInt64> [16+smagic16(c).s]))
  1159      (Rsh32x64 <t>
  1160        (SignExt16to32 x)
  1161        (Const64 <typ.UInt64> [31])))
  1162  (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 8 =>
  1163    (Sub32 <t>
  1164      (Rsh64x64 <t>
  1165        (Mul64 <typ.UInt64>
  1166          (Const64 <typ.UInt64> [int64(smagic32(c).m)])
  1167          (SignExt32to64 x))
  1168        (Const64 <typ.UInt64> [32+smagic32(c).s]))
  1169      (Rsh64x64 <t>
  1170        (SignExt32to64 x)
  1171        (Const64 <typ.UInt64> [63])))
  1172  (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 == 0 && config.useHmul =>
  1173    (Sub32 <t>
  1174      (Rsh32x64 <t>
  1175        (Hmul32 <t>
  1176          (Const32 <typ.UInt32> [int32(smagic32(c).m/2)])
  1177          x)
  1178        (Const64 <typ.UInt64> [smagic32(c).s-1]))
  1179      (Rsh32x64 <t>
  1180        x
  1181        (Const64 <typ.UInt64> [31])))
  1182  (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 != 0 && config.useHmul =>
  1183    (Sub32 <t>
  1184      (Rsh32x64 <t>
  1185        (Add32 <t>
  1186          (Hmul32 <t>
  1187            (Const32 <typ.UInt32> [int32(smagic32(c).m)])
  1188            x)
  1189          x)
  1190        (Const64 <typ.UInt64> [smagic32(c).s]))
  1191      (Rsh32x64 <t>
  1192        x
  1193        (Const64 <typ.UInt64> [31])))
  1194  (Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 == 0 && config.useHmul =>
  1195    (Sub64 <t>
  1196      (Rsh64x64 <t>
  1197        (Hmul64 <t>
  1198          (Const64 <typ.UInt64> [int64(smagic64(c).m/2)])
  1199          x)
  1200        (Const64 <typ.UInt64> [smagic64(c).s-1]))
  1201      (Rsh64x64 <t>
  1202        x
  1203        (Const64 <typ.UInt64> [63])))
  1204  (Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 != 0 && config.useHmul =>
  1205    (Sub64 <t>
  1206      (Rsh64x64 <t>
  1207        (Add64 <t>
  1208          (Hmul64 <t>
  1209            (Const64 <typ.UInt64> [int64(smagic64(c).m)])
  1210            x)
  1211          x)
  1212        (Const64 <typ.UInt64> [smagic64(c).s]))
  1213      (Rsh64x64 <t>
  1214        x
  1215        (Const64 <typ.UInt64> [63])))
  1216  
  1217  // Unsigned mod by power of 2 constant.
  1218  (Mod8u  <t> n (Const8  [c])) && isPowerOfTwo8(c)  => (And8  n (Const8  <t> [c-1]))
  1219  (Mod16u <t> n (Const16 [c])) && isPowerOfTwo16(c) => (And16 n (Const16 <t> [c-1]))
  1220  (Mod32u <t> n (Const32 [c])) && isPowerOfTwo32(c) => (And32 n (Const32 <t> [c-1]))
  1221  (Mod64u <t> n (Const64 [c])) && isPowerOfTwo64(c) => (And64 n (Const64 <t> [c-1]))
  1222  (Mod64u <t> n (Const64 [-1<<63]))                 => (And64 n (Const64 <t> [1<<63-1]))
  1223  
  1224  // Signed non-negative mod by power of 2 constant.
  1225  (Mod8  <t> n (Const8  [c])) && isNonNegative(n) && isPowerOfTwo8(c)  => (And8  n (Const8  <t> [c-1]))
  1226  (Mod16 <t> n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo16(c) => (And16 n (Const16 <t> [c-1]))
  1227  (Mod32 <t> n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo32(c) => (And32 n (Const32 <t> [c-1]))
  1228  (Mod64 <t> n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo64(c) => (And64 n (Const64 <t> [c-1]))
  1229  (Mod64 n (Const64 [-1<<63])) && isNonNegative(n)                   => n
  1230  
  1231  // Signed mod by negative constant.
  1232  (Mod8  <t> n (Const8  [c])) && c < 0 && c != -1<<7  => (Mod8  <t> n (Const8  <t> [-c]))
  1233  (Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Mod16 <t> n (Const16 <t> [-c]))
  1234  (Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Mod32 <t> n (Const32 <t> [-c]))
  1235  (Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Mod64 <t> n (Const64 <t> [-c]))
  1236  
  1237  // All other mods by constants, do A%B = A-(A/B*B).
  1238  // This implements % with two * and a bunch of ancillary ops.
  1239  // One of the * is free if the user's code also computes A/B.
  1240  (Mod8   <t> x (Const8  [c])) && x.Op != OpConst8  && (c > 0 || c == -1<<7)
  1241    => (Sub8  x (Mul8  <t> (Div8   <t> x (Const8  <t> [c])) (Const8  <t> [c])))
  1242  (Mod16  <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15)
  1243    => (Sub16 x (Mul16 <t> (Div16  <t> x (Const16 <t> [c])) (Const16 <t> [c])))
  1244  (Mod32  <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31)
  1245    => (Sub32 x (Mul32 <t> (Div32  <t> x (Const32 <t> [c])) (Const32 <t> [c])))
  1246  (Mod64  <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63)
  1247    => (Sub64 x (Mul64 <t> (Div64  <t> x (Const64 <t> [c])) (Const64 <t> [c])))
  1248  (Mod8u  <t> x (Const8  [c])) && x.Op != OpConst8  && c > 0 && umagicOK8( c)
  1249    => (Sub8  x (Mul8  <t> (Div8u  <t> x (Const8  <t> [c])) (Const8  <t> [c])))
  1250  (Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK16(c)
  1251    => (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c])))
  1252  (Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK32(c)
  1253    => (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c])))
  1254  (Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK64(c)
  1255    => (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c])))
  1256  
  1257  // For architectures without rotates on less than 32-bits, promote these checks to 32-bit.
  1258  (Eq8 (Mod8u x (Const8  [c])) (Const8 [0])) && x.Op != OpConst8 && udivisibleOK8(c) && !hasSmallRotate(config) =>
  1259  	(Eq32 (Mod32u <typ.UInt32> (ZeroExt8to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint8(c))])) (Const32 <typ.UInt32> [0]))
  1260  (Eq16 (Mod16u x (Const16  [c])) (Const16 [0])) && x.Op != OpConst16 && udivisibleOK16(c) && !hasSmallRotate(config) =>
  1261  	(Eq32 (Mod32u <typ.UInt32> (ZeroExt16to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint16(c))])) (Const32 <typ.UInt32> [0]))
  1262  (Eq8 (Mod8 x (Const8  [c])) (Const8 [0])) && x.Op != OpConst8 && sdivisibleOK8(c) && !hasSmallRotate(config) =>
  1263  	(Eq32 (Mod32 <typ.Int32> (SignExt8to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0]))
  1264  (Eq16 (Mod16 x (Const16  [c])) (Const16 [0])) && x.Op != OpConst16 && sdivisibleOK16(c) && !hasSmallRotate(config) =>
  1265  	(Eq32 (Mod32 <typ.Int32> (SignExt16to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0]))
  1266  
  1267  // Divisibility checks x%c == 0 convert to multiply and rotate.
  1268  // Note, x%c == 0 is rewritten as x == c*(x/c) during the opt pass
  1269  // where (x/c) is performed using multiplication with magic constants.
  1270  // To rewrite x%c == 0 requires pattern matching the rewritten expression
  1271  // and checking that the division by the same constant wasn't already calculated.
  1272  // This check is made by counting uses of the magic constant multiplication.
  1273  // Note that if there were an intermediate opt pass, this rule could be applied
  1274  // directly on the Div op and magic division rewrites could be delayed to late opt.
  1275  
  1276  // Unsigned divisibility checks convert to multiply and rotate.
  1277  (Eq8 x (Mul8 (Const8 [c])
  1278    (Trunc32to8
  1279      (Rsh32Ux64
  1280        mul:(Mul32
  1281          (Const32 [m])
  1282          (ZeroExt8to32 x))
  1283        (Const64 [s])))
  1284  	)
  1285  )
  1286    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1287    && m == int32(1<<8+umagic8(c).m) && s == 8+umagic8(c).s
  1288    && x.Op != OpConst8 && udivisibleOK8(c)
  1289   => (Leq8U
  1290  			(RotateLeft8 <typ.UInt8>
  1291  				(Mul8 <typ.UInt8>
  1292  					(Const8 <typ.UInt8> [int8(udivisible8(c).m)])
  1293  					x)
  1294  				(Const8 <typ.UInt8> [int8(8-udivisible8(c).k)])
  1295  				)
  1296  			(Const8 <typ.UInt8> [int8(udivisible8(c).max)])
  1297  		)
  1298  
  1299  (Eq16 x (Mul16 (Const16 [c])
  1300    (Trunc64to16
  1301      (Rsh64Ux64
  1302        mul:(Mul64
  1303          (Const64 [m])
  1304          (ZeroExt16to64 x))
  1305        (Const64 [s])))
  1306  	)
  1307  )
  1308    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1309    && m == int64(1<<16+umagic16(c).m) && s == 16+umagic16(c).s
  1310    && x.Op != OpConst16 && udivisibleOK16(c)
  1311   => (Leq16U
  1312  			(RotateLeft16 <typ.UInt16>
  1313  				(Mul16 <typ.UInt16>
  1314  					(Const16 <typ.UInt16> [int16(udivisible16(c).m)])
  1315  					x)
  1316  				(Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
  1317  				)
  1318  			(Const16 <typ.UInt16> [int16(udivisible16(c).max)])
  1319  		)
  1320  
  1321  (Eq16 x (Mul16 (Const16 [c])
  1322    (Trunc32to16
  1323      (Rsh32Ux64
  1324        mul:(Mul32
  1325          (Const32 [m])
  1326          (ZeroExt16to32 x))
  1327        (Const64 [s])))
  1328  	)
  1329  )
  1330    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1331    && m == int32(1<<15+umagic16(c).m/2) && s == 16+umagic16(c).s-1
  1332    && x.Op != OpConst16 && udivisibleOK16(c)
  1333   => (Leq16U
  1334  			(RotateLeft16 <typ.UInt16>
  1335  				(Mul16 <typ.UInt16>
  1336  					(Const16 <typ.UInt16> [int16(udivisible16(c).m)])
  1337  					x)
  1338  				(Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
  1339  				)
  1340  			(Const16 <typ.UInt16> [int16(udivisible16(c).max)])
  1341  		)
  1342  
  1343  (Eq16 x (Mul16 (Const16 [c])
  1344    (Trunc32to16
  1345      (Rsh32Ux64
  1346        mul:(Mul32
  1347          (Const32 [m])
  1348          (Rsh32Ux64 (ZeroExt16to32 x) (Const64 [1])))
  1349        (Const64 [s])))
  1350  	)
  1351  )
  1352    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1353    && m == int32(1<<15+(umagic16(c).m+1)/2) && s == 16+umagic16(c).s-2
  1354    && x.Op != OpConst16 && udivisibleOK16(c)
  1355   => (Leq16U
  1356  			(RotateLeft16 <typ.UInt16>
  1357  				(Mul16 <typ.UInt16>
  1358  					(Const16 <typ.UInt16> [int16(udivisible16(c).m)])
  1359  					x)
  1360  				(Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
  1361  				)
  1362  			(Const16 <typ.UInt16> [int16(udivisible16(c).max)])
  1363  		)
  1364  
  1365  (Eq16 x (Mul16 (Const16 [c])
  1366    (Trunc32to16
  1367      (Rsh32Ux64
  1368        (Avg32u
  1369          (Lsh32x64 (ZeroExt16to32 x) (Const64 [16]))
  1370          mul:(Mul32
  1371            (Const32 [m])
  1372            (ZeroExt16to32 x)))
  1373        (Const64 [s])))
  1374  	)
  1375  )
  1376    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1377    && m == int32(umagic16(c).m) && s == 16+umagic16(c).s-1
  1378    && x.Op != OpConst16 && udivisibleOK16(c)
  1379   => (Leq16U
  1380  			(RotateLeft16 <typ.UInt16>
  1381  				(Mul16 <typ.UInt16>
  1382  					(Const16 <typ.UInt16> [int16(udivisible16(c).m)])
  1383  					x)
  1384  				(Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
  1385  				)
  1386  			(Const16 <typ.UInt16> [int16(udivisible16(c).max)])
  1387  		)
  1388  
  1389  (Eq32 x (Mul32 (Const32 [c])
  1390  	(Rsh32Ux64
  1391  		mul:(Hmul32u
  1392  			(Const32 [m])
  1393  			x)
  1394  		(Const64 [s]))
  1395  	)
  1396  )
  1397    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1398    && m == int32(1<<31+umagic32(c).m/2) && s == umagic32(c).s-1
  1399  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1400   => (Leq32U
  1401  			(RotateLeft32 <typ.UInt32>
  1402  				(Mul32 <typ.UInt32>
  1403  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1404  					x)
  1405  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1406  				)
  1407  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1408  		)
  1409  
  1410  (Eq32 x (Mul32 (Const32 [c])
  1411    (Rsh32Ux64
  1412      mul:(Hmul32u
  1413        (Const32 <typ.UInt32> [m])
  1414        (Rsh32Ux64 x (Const64 [1])))
  1415      (Const64 [s]))
  1416  	)
  1417  )
  1418    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1419    && m == int32(1<<31+(umagic32(c).m+1)/2) && s == umagic32(c).s-2
  1420  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1421   => (Leq32U
  1422  			(RotateLeft32 <typ.UInt32>
  1423  				(Mul32 <typ.UInt32>
  1424  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1425  					x)
  1426  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1427  				)
  1428  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1429  		)
  1430  
  1431  (Eq32 x (Mul32 (Const32 [c])
  1432    (Rsh32Ux64
  1433      (Avg32u
  1434        x
  1435        mul:(Hmul32u
  1436          (Const32 [m])
  1437          x))
  1438      (Const64 [s]))
  1439  	)
  1440  )
  1441    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1442    && m == int32(umagic32(c).m) && s == umagic32(c).s-1
  1443  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1444   => (Leq32U
  1445  			(RotateLeft32 <typ.UInt32>
  1446  				(Mul32 <typ.UInt32>
  1447  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1448  					x)
  1449  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1450  				)
  1451  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1452  		)
  1453  
  1454  (Eq32 x (Mul32 (Const32 [c])
  1455    (Trunc64to32
  1456      (Rsh64Ux64
  1457        mul:(Mul64
  1458          (Const64 [m])
  1459          (ZeroExt32to64 x))
  1460        (Const64 [s])))
  1461  	)
  1462  )
  1463    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1464    && m == int64(1<<31+umagic32(c).m/2) && s == 32+umagic32(c).s-1
  1465  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1466   => (Leq32U
  1467  			(RotateLeft32 <typ.UInt32>
  1468  				(Mul32 <typ.UInt32>
  1469  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1470  					x)
  1471  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1472  				)
  1473  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1474  		)
  1475  
  1476  (Eq32 x (Mul32 (Const32 [c])
  1477    (Trunc64to32
  1478      (Rsh64Ux64
  1479        mul:(Mul64
  1480          (Const64 [m])
  1481          (Rsh64Ux64 (ZeroExt32to64 x) (Const64 [1])))
  1482        (Const64 [s])))
  1483  	)
  1484  )
  1485    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1486    && m == int64(1<<31+(umagic32(c).m+1)/2) && s == 32+umagic32(c).s-2
  1487  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1488   => (Leq32U
  1489  			(RotateLeft32 <typ.UInt32>
  1490  				(Mul32 <typ.UInt32>
  1491  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1492  					x)
  1493  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1494  				)
  1495  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1496  		)
  1497  
  1498  (Eq32 x (Mul32 (Const32 [c])
  1499    (Trunc64to32
  1500      (Rsh64Ux64
  1501        (Avg64u
  1502          (Lsh64x64 (ZeroExt32to64 x) (Const64 [32]))
  1503          mul:(Mul64
  1504            (Const64 [m])
  1505            (ZeroExt32to64 x)))
  1506        (Const64 [s])))
  1507  	)
  1508  )
  1509    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1510    && m == int64(umagic32(c).m) && s == 32+umagic32(c).s-1
  1511  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1512   => (Leq32U
  1513  			(RotateLeft32 <typ.UInt32>
  1514  				(Mul32 <typ.UInt32>
  1515  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1516  					x)
  1517  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1518  				)
  1519  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1520  		)
  1521  
  1522  (Eq64 x (Mul64 (Const64 [c])
  1523  	(Rsh64Ux64
  1524  		mul:(Hmul64u
  1525  			(Const64 [m])
  1526  			x)
  1527  		(Const64 [s]))
  1528  	)
  1529  ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1530    && m == int64(1<<63+umagic64(c).m/2) && s == umagic64(c).s-1
  1531    && x.Op != OpConst64 && udivisibleOK64(c)
  1532   => (Leq64U
  1533  			(RotateLeft64 <typ.UInt64>
  1534  				(Mul64 <typ.UInt64>
  1535  					(Const64 <typ.UInt64> [int64(udivisible64(c).m)])
  1536  					x)
  1537  				(Const64 <typ.UInt64> [64-udivisible64(c).k])
  1538  				)
  1539  			(Const64 <typ.UInt64> [int64(udivisible64(c).max)])
  1540  		)
  1541  (Eq64 x (Mul64 (Const64 [c])
  1542  	(Rsh64Ux64
  1543  		mul:(Hmul64u
  1544  			(Const64 [m])
  1545  			(Rsh64Ux64 x (Const64 [1])))
  1546  		(Const64 [s]))
  1547  	)
  1548  ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1549    && m == int64(1<<63+(umagic64(c).m+1)/2) && s == umagic64(c).s-2
  1550    && x.Op != OpConst64 && udivisibleOK64(c)
  1551   => (Leq64U
  1552  			(RotateLeft64 <typ.UInt64>
  1553  				(Mul64 <typ.UInt64>
  1554  					(Const64 <typ.UInt64> [int64(udivisible64(c).m)])
  1555  					x)
  1556  				(Const64 <typ.UInt64> [64-udivisible64(c).k])
  1557  				)
  1558  			(Const64 <typ.UInt64> [int64(udivisible64(c).max)])
  1559  		)
  1560  (Eq64 x (Mul64 (Const64 [c])
  1561  	(Rsh64Ux64
  1562  		(Avg64u
  1563  			x
  1564  			mul:(Hmul64u
  1565  				(Const64 [m])
  1566  				x))
  1567  		(Const64 [s]))
  1568  	)
  1569  ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1570    && m == int64(umagic64(c).m) && s == umagic64(c).s-1
  1571    && x.Op != OpConst64 && udivisibleOK64(c)
  1572   => (Leq64U
  1573  			(RotateLeft64 <typ.UInt64>
  1574  				(Mul64 <typ.UInt64>
  1575  					(Const64 <typ.UInt64> [int64(udivisible64(c).m)])
  1576  					x)
  1577  				(Const64 <typ.UInt64> [64-udivisible64(c).k])
  1578  				)
  1579  			(Const64 <typ.UInt64> [int64(udivisible64(c).max)])
  1580  		)
  1581  
  1582  // Signed divisibility checks convert to multiply, add and rotate.
  1583  (Eq8 x (Mul8 (Const8 [c])
  1584    (Sub8
  1585      (Rsh32x64
  1586        mul:(Mul32
  1587          (Const32 [m])
  1588          (SignExt8to32 x))
  1589        (Const64 [s]))
  1590      (Rsh32x64
  1591        (SignExt8to32 x)
  1592        (Const64 [31])))
  1593  	)
  1594  )
  1595    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1596    && m == int32(smagic8(c).m) && s == 8+smagic8(c).s
  1597  	&& x.Op != OpConst8 && sdivisibleOK8(c)
  1598   => (Leq8U
  1599  			(RotateLeft8 <typ.UInt8>
  1600  				(Add8 <typ.UInt8>
  1601  					(Mul8 <typ.UInt8>
  1602  						(Const8 <typ.UInt8> [int8(sdivisible8(c).m)])
  1603  						x)
  1604  					(Const8 <typ.UInt8> [int8(sdivisible8(c).a)])
  1605  				)
  1606  				(Const8 <typ.UInt8> [int8(8-sdivisible8(c).k)])
  1607  			)
  1608  			(Const8 <typ.UInt8> [int8(sdivisible8(c).max)])
  1609  		)
  1610  
  1611  (Eq16 x (Mul16 (Const16 [c])
  1612    (Sub16
  1613      (Rsh32x64
  1614        mul:(Mul32
  1615          (Const32 [m])
  1616          (SignExt16to32 x))
  1617        (Const64 [s]))
  1618      (Rsh32x64
  1619        (SignExt16to32 x)
  1620        (Const64 [31])))
  1621  	)
  1622  )
  1623    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1624    && m == int32(smagic16(c).m) && s == 16+smagic16(c).s
  1625  	&& x.Op != OpConst16 && sdivisibleOK16(c)
  1626   => (Leq16U
  1627  			(RotateLeft16 <typ.UInt16>
  1628  				(Add16 <typ.UInt16>
  1629  					(Mul16 <typ.UInt16>
  1630  						(Const16 <typ.UInt16> [int16(sdivisible16(c).m)])
  1631  						x)
  1632  					(Const16 <typ.UInt16> [int16(sdivisible16(c).a)])
  1633  				)
  1634  				(Const16 <typ.UInt16> [int16(16-sdivisible16(c).k)])
  1635  			)
  1636  			(Const16 <typ.UInt16> [int16(sdivisible16(c).max)])
  1637  		)
  1638  
  1639  (Eq32 x (Mul32 (Const32 [c])
  1640    (Sub32
  1641      (Rsh64x64
  1642        mul:(Mul64
  1643          (Const64 [m])
  1644          (SignExt32to64 x))
  1645        (Const64 [s]))
  1646      (Rsh64x64
  1647        (SignExt32to64 x)
  1648        (Const64 [63])))
  1649  	)
  1650  )
  1651    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1652    && m == int64(smagic32(c).m) && s == 32+smagic32(c).s
  1653  	&& x.Op != OpConst32 && sdivisibleOK32(c)
  1654   => (Leq32U
  1655  			(RotateLeft32 <typ.UInt32>
  1656  				(Add32 <typ.UInt32>
  1657  					(Mul32 <typ.UInt32>
  1658  						(Const32 <typ.UInt32> [int32(sdivisible32(c).m)])
  1659  						x)
  1660  					(Const32 <typ.UInt32> [int32(sdivisible32(c).a)])
  1661  				)
  1662  				(Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)])
  1663  			)
  1664  			(Const32 <typ.UInt32> [int32(sdivisible32(c).max)])
  1665  		)
  1666  
  1667  (Eq32 x (Mul32 (Const32 [c])
  1668    (Sub32
  1669      (Rsh32x64
  1670        mul:(Hmul32
  1671          (Const32 [m])
  1672          x)
  1673        (Const64 [s]))
  1674      (Rsh32x64
  1675        x
  1676        (Const64 [31])))
  1677  	)
  1678  )
  1679    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1680    && m == int32(smagic32(c).m/2) && s == smagic32(c).s-1
  1681  	&& x.Op != OpConst32 && sdivisibleOK32(c)
  1682   => (Leq32U
  1683  			(RotateLeft32 <typ.UInt32>
  1684  				(Add32 <typ.UInt32>
  1685  					(Mul32 <typ.UInt32>
  1686  						(Const32 <typ.UInt32> [int32(sdivisible32(c).m)])
  1687  						x)
  1688  					(Const32 <typ.UInt32> [int32(sdivisible32(c).a)])
  1689  				)
  1690  				(Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)])
  1691  			)
  1692  			(Const32 <typ.UInt32> [int32(sdivisible32(c).max)])
  1693  		)
  1694  
  1695  (Eq32 x (Mul32 (Const32 [c])
  1696    (Sub32
  1697      (Rsh32x64
  1698        (Add32
  1699          mul:(Hmul32
  1700            (Const32 [m])
  1701            x)
  1702          x)
  1703        (Const64 [s]))
  1704      (Rsh32x64
  1705        x
  1706        (Const64 [31])))
  1707  	)
  1708  )
  1709    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1710    && m == int32(smagic32(c).m) && s == smagic32(c).s
  1711  	&& x.Op != OpConst32 && sdivisibleOK32(c)
  1712   => (Leq32U
  1713  			(RotateLeft32 <typ.UInt32>
  1714  				(Add32 <typ.UInt32>
  1715  					(Mul32 <typ.UInt32>
  1716  						(Const32 <typ.UInt32> [int32(sdivisible32(c).m)])
  1717  						x)
  1718  					(Const32 <typ.UInt32> [int32(sdivisible32(c).a)])
  1719  				)
  1720  				(Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)])
  1721  			)
  1722  			(Const32 <typ.UInt32> [int32(sdivisible32(c).max)])
  1723  		)
  1724  
  1725  (Eq64 x (Mul64 (Const64 [c])
  1726    (Sub64
  1727      (Rsh64x64
  1728        mul:(Hmul64
  1729          (Const64 [m])
  1730          x)
  1731        (Const64 [s]))
  1732      (Rsh64x64
  1733        x
  1734        (Const64 [63])))
  1735  	)
  1736  )
  1737    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1738    && m == int64(smagic64(c).m/2) && s == smagic64(c).s-1
  1739  	&& x.Op != OpConst64 && sdivisibleOK64(c)
  1740   => (Leq64U
  1741  			(RotateLeft64 <typ.UInt64>
  1742  				(Add64 <typ.UInt64>
  1743  					(Mul64 <typ.UInt64>
  1744  						(Const64 <typ.UInt64> [int64(sdivisible64(c).m)])
  1745  						x)
  1746  					(Const64 <typ.UInt64> [int64(sdivisible64(c).a)])
  1747  				)
  1748  				(Const64 <typ.UInt64> [64-sdivisible64(c).k])
  1749  			)
  1750  			(Const64 <typ.UInt64> [int64(sdivisible64(c).max)])
  1751  		)
  1752  
  1753  (Eq64 x (Mul64 (Const64 [c])
  1754    (Sub64
  1755      (Rsh64x64
  1756        (Add64
  1757          mul:(Hmul64
  1758            (Const64 [m])
  1759            x)
  1760          x)
  1761        (Const64 [s]))
  1762      (Rsh64x64
  1763        x
  1764        (Const64 [63])))
  1765  	)
  1766  )
  1767    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1768    && m == int64(smagic64(c).m) && s == smagic64(c).s
  1769  	&& x.Op != OpConst64 && sdivisibleOK64(c)
  1770   => (Leq64U
  1771  			(RotateLeft64 <typ.UInt64>
  1772  				(Add64 <typ.UInt64>
  1773  					(Mul64 <typ.UInt64>
  1774  						(Const64 <typ.UInt64> [int64(sdivisible64(c).m)])
  1775  						x)
  1776  					(Const64 <typ.UInt64> [int64(sdivisible64(c).a)])
  1777  				)
  1778  				(Const64 <typ.UInt64> [64-sdivisible64(c).k])
  1779  			)
  1780  			(Const64 <typ.UInt64> [int64(sdivisible64(c).max)])
  1781  		)
  1782  
  1783  // Divisibility check for signed integers for power of two constant are simple mask.
  1784  // However, we must match against the rewritten n%c == 0 -> n - c*(n/c) == 0 -> n == c*(n/c)
  1785  // where n/c contains fixup code to handle signed n.
  1786  ((Eq8|Neq8) n (Lsh8x64
  1787    (Rsh8x64
  1788      (Add8  <t> n (Rsh8Ux64  <t> (Rsh8x64  <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [kbar])))
  1789      (Const64 <typ.UInt64> [k]))
  1790  	(Const64 <typ.UInt64> [k]))
  1791  ) && k > 0 && k < 7 && kbar == 8 - k
  1792    => ((Eq8|Neq8) (And8 <t> n (Const8 <t> [1<<uint(k)-1])) (Const8 <t> [0]))
  1793  
  1794  ((Eq16|Neq16) n (Lsh16x64
  1795    (Rsh16x64
  1796      (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [kbar])))
  1797      (Const64 <typ.UInt64> [k]))
  1798  	(Const64 <typ.UInt64> [k]))
  1799  ) && k > 0 && k < 15 && kbar == 16 - k
  1800    => ((Eq16|Neq16) (And16 <t> n (Const16 <t> [1<<uint(k)-1])) (Const16 <t> [0]))
  1801  
  1802  ((Eq32|Neq32) n (Lsh32x64
  1803    (Rsh32x64
  1804      (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [kbar])))
  1805      (Const64 <typ.UInt64> [k]))
  1806  	(Const64 <typ.UInt64> [k]))
  1807  ) && k > 0 && k < 31 && kbar == 32 - k
  1808    => ((Eq32|Neq32) (And32 <t> n (Const32 <t> [1<<uint(k)-1])) (Const32 <t> [0]))
  1809  
  1810  ((Eq64|Neq64) n (Lsh64x64
  1811    (Rsh64x64
  1812      (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [kbar])))
  1813      (Const64 <typ.UInt64> [k]))
  1814  	(Const64 <typ.UInt64> [k]))
  1815  ) && k > 0 && k < 63 && kbar == 64 - k
  1816    => ((Eq64|Neq64) (And64 <t> n (Const64 <t> [1<<uint(k)-1])) (Const64 <t> [0]))
  1817  
  1818  (Eq(8|16|32|64)  s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Eq(8|16|32|64)  x y)
  1819  (Neq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Neq(8|16|32|64) x y)
  1820  
  1821  // Optimize bitsets
  1822  (Eq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [y])) && oneBit8(y)
  1823    => (Neq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [0]))
  1824  (Eq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [y])) && oneBit16(y)
  1825    => (Neq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [0]))
  1826  (Eq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [y])) && oneBit32(y)
  1827    => (Neq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [0]))
  1828  (Eq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [y])) && oneBit64(y)
  1829    => (Neq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [0]))
  1830  (Neq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [y])) && oneBit8(y)
  1831    => (Eq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [0]))
  1832  (Neq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [y])) && oneBit16(y)
  1833    => (Eq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [0]))
  1834  (Neq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [y])) && oneBit32(y)
  1835    => (Eq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [0]))
  1836  (Neq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [y])) && oneBit64(y)
  1837    => (Eq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [0]))
  1838  
  1839  // Reassociate expressions involving
  1840  // constants such that constants come first,
  1841  // exposing obvious constant-folding opportunities.
  1842  // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C
  1843  // is constant, which pushes constants to the outside
  1844  // of the expression. At that point, any constant-folding
  1845  // opportunities should be obvious.
  1846  // Note: don't include AddPtr here! In order to maintain the
  1847  // invariant that pointers must stay within the pointed-to object,
  1848  // we can't pull part of a pointer computation above the AddPtr.
  1849  // See issue 37881.
  1850  // Note: we don't need to handle any (x-C) cases because we already rewrite
  1851  // (x-C) to (x+(-C)).
  1852  
  1853  // x + (C + z) -> C + (x + z)
  1854  (Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Add64 <t> z x))
  1855  (Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Add32 <t> z x))
  1856  (Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Add16 <t> z x))
  1857  (Add8  (Add8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Add8  i (Add8  <t> z x))
  1858  
  1859  // x + (C - z) -> C + (x - z)
  1860  (Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> x z))
  1861  (Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> x z))
  1862  (Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> x z))
  1863  (Add8  (Sub8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Add8  i (Sub8  <t> x z))
  1864  
  1865  // x - (C - z) -> x + (z - C) -> (x + z) - C
  1866  (Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Add64 <t> x z) i)
  1867  (Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Add32 <t> x z) i)
  1868  (Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Add16 <t> x z) i)
  1869  (Sub8  x (Sub8  i:(Const8  <t>) z)) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Sub8  (Add8  <t> x z) i)
  1870  
  1871  // x - (z + C) -> x + (-z - C) -> (x - z) - C
  1872  (Sub64 x (Add64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Sub64 <t> x z) i)
  1873  (Sub32 x (Add32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Sub32 <t> x z) i)
  1874  (Sub16 x (Add16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Sub16 <t> x z) i)
  1875  (Sub8  x (Add8  z i:(Const8  <t>))) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Sub8 (Sub8  <t> x z) i)
  1876  
  1877  // (C - z) - x -> C - (z + x)
  1878  (Sub64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 i (Add64 <t> z x))
  1879  (Sub32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 i (Add32 <t> z x))
  1880  (Sub16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 i (Add16 <t> z x))
  1881  (Sub8  (Sub8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Sub8  i (Add8  <t> z x))
  1882  
  1883  // (z + C) -x -> C + (z - x)
  1884  (Sub64 (Add64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> z x))
  1885  (Sub32 (Add32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> z x))
  1886  (Sub16 (Add16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> z x))
  1887  (Sub8  (Add8  z i:(Const8  <t>)) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Add8  i (Sub8  <t> z x))
  1888  
  1889  // x & (C & z) -> C & (x & z)
  1890  (And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (And64 i (And64 <t> z x))
  1891  (And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (And32 i (And32 <t> z x))
  1892  (And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (And16 i (And16 <t> z x))
  1893  (And8  (And8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (And8  i (And8  <t> z x))
  1894  
  1895  // x | (C | z) -> C | (x | z)
  1896  (Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Or64 i (Or64 <t> z x))
  1897  (Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Or32 i (Or32 <t> z x))
  1898  (Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Or16 i (Or16 <t> z x))
  1899  (Or8  (Or8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Or8  i (Or8  <t> z x))
  1900  
  1901  // x ^ (C ^ z) -> C ^ (x ^ z)
  1902  (Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Xor64 i (Xor64 <t> z x))
  1903  (Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Xor32 i (Xor32 <t> z x))
  1904  (Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Xor16 i (Xor16 <t> z x))
  1905  (Xor8  (Xor8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Xor8  i (Xor8  <t> z x))
  1906  
  1907  // x * (D * z) = D * (x * z)
  1908  (Mul64 (Mul64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Mul64 i (Mul64 <t> x z))
  1909  (Mul32 (Mul32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Mul32 i (Mul32 <t> x z))
  1910  (Mul16 (Mul16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Mul16 i (Mul16 <t> x z))
  1911  (Mul8  (Mul8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Mul8  i (Mul8  <t> x z))
  1912  
  1913  // C + (D + x) -> (C + D) + x
  1914  (Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c+d]) x)
  1915  (Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c+d]) x)
  1916  (Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c+d]) x)
  1917  (Add8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) => (Add8  (Const8  <t> [c+d]) x)
  1918  
  1919  // C + (D - x) -> (C + D) - x
  1920  (Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c+d]) x)
  1921  (Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c+d]) x)
  1922  (Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c+d]) x)
  1923  (Add8  (Const8  <t> [c]) (Sub8  (Const8  <t> [d]) x)) => (Sub8  (Const8  <t> [c+d]) x)
  1924  
  1925  // C - (D - x) -> (C - D) + x
  1926  (Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c-d]) x)
  1927  (Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c-d]) x)
  1928  (Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c-d]) x)
  1929  (Sub8  (Const8  <t> [c]) (Sub8  (Const8  <t> [d]) x)) => (Add8  (Const8  <t> [c-d]) x)
  1930  
  1931  // C - (D + x) -> (C - D) - x
  1932  (Sub64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c-d]) x)
  1933  (Sub32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c-d]) x)
  1934  (Sub16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c-d]) x)
  1935  (Sub8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) => (Sub8  (Const8  <t> [c-d]) x)
  1936  
  1937  // C & (D & x) -> (C & D) & x
  1938  (And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) => (And64 (Const64 <t> [c&d]) x)
  1939  (And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) => (And32 (Const32 <t> [c&d]) x)
  1940  (And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) => (And16 (Const16 <t> [c&d]) x)
  1941  (And8  (Const8  <t> [c]) (And8  (Const8  <t> [d]) x)) => (And8  (Const8  <t> [c&d]) x)
  1942  
  1943  // C | (D | x) -> (C | D) | x
  1944  (Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) => (Or64 (Const64 <t> [c|d]) x)
  1945  (Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) => (Or32 (Const32 <t> [c|d]) x)
  1946  (Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) => (Or16 (Const16 <t> [c|d]) x)
  1947  (Or8  (Const8  <t> [c]) (Or8  (Const8  <t> [d]) x)) => (Or8  (Const8  <t> [c|d]) x)
  1948  
  1949  // C ^ (D ^ x) -> (C ^ D) ^ x
  1950  (Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) => (Xor64 (Const64 <t> [c^d]) x)
  1951  (Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) => (Xor32 (Const32 <t> [c^d]) x)
  1952  (Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) => (Xor16 (Const16 <t> [c^d]) x)
  1953  (Xor8  (Const8  <t> [c]) (Xor8  (Const8  <t> [d]) x)) => (Xor8  (Const8  <t> [c^d]) x)
  1954  
  1955  // C * (D * x) = (C * D) * x
  1956  (Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) => (Mul64 (Const64 <t> [c*d]) x)
  1957  (Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) => (Mul32 (Const32 <t> [c*d]) x)
  1958  (Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) => (Mul16 (Const16 <t> [c*d]) x)
  1959  (Mul8  (Const8  <t> [c]) (Mul8  (Const8  <t> [d]) x)) => (Mul8  (Const8  <t> [c*d]) x)
  1960  
  1961  // floating point optimizations
  1962  (Mul(32|64)F x (Const(32|64)F [1])) => x
  1963  (Mul32F x (Const32F [-1])) => (Neg32F x)
  1964  (Mul64F x (Const64F [-1])) => (Neg64F x)
  1965  (Mul32F x (Const32F [2])) => (Add32F x x)
  1966  (Mul64F x (Const64F [2])) => (Add64F x x)
  1967  
  1968  (Div32F x (Const32F <t> [c])) && reciprocalExact32(c) => (Mul32F x (Const32F <t> [1/c]))
  1969  (Div64F x (Const64F <t> [c])) && reciprocalExact64(c) => (Mul64F x (Const64F <t> [1/c]))
  1970  
  1971  // rewrite single-precision sqrt expression "float32(math.Sqrt(float64(x)))"
  1972  (Cvt64Fto32F sqrt0:(Sqrt (Cvt32Fto64F x))) && sqrt0.Uses==1 => (Sqrt32 x)
  1973  
  1974  (Sqrt (Const64F [c])) && !math.IsNaN(math.Sqrt(c)) => (Const64F [math.Sqrt(c)])
  1975  
  1976  // for rewriting results of some late-expanded rewrites (below)
  1977  (SelectN [0] (MakeResult x ___)) => x
  1978  (SelectN [1] (MakeResult x y ___)) => y
  1979  (SelectN [2] (MakeResult x y z ___)) => z
  1980  
  1981  // for late-expanded calls, recognize newobject and remove zeroing and nilchecks
  1982  (Zero (SelectN [0] call:(StaticLECall _ _)) mem:(SelectN [1] call))
  1983  	&& isSameCall(call.Aux, "runtime.newobject")
  1984  	=> mem
  1985  
  1986  (Store (SelectN [0] call:(StaticLECall _ _)) x mem:(SelectN [1] call))
  1987  	&& isConstZero(x)
  1988  	&& isSameCall(call.Aux, "runtime.newobject")
  1989  	=> mem
  1990  
  1991  (Store (OffPtr (SelectN [0] call:(StaticLECall _ _))) x mem:(SelectN [1] call))
  1992  	&& isConstZero(x)
  1993  	&& isSameCall(call.Aux, "runtime.newobject")
  1994  	=> mem
  1995  
  1996  (NilCheck (SelectN [0] call:(StaticLECall _ _)) _)
  1997  	&& isSameCall(call.Aux, "runtime.newobject")
  1998  	&& warnRule(fe.Debug_checknil(), v, "removed nil check")
  1999  	=> (Invalid)
  2000  
  2001  (NilCheck (OffPtr (SelectN [0] call:(StaticLECall _ _))) _)
  2002  	&& isSameCall(call.Aux, "runtime.newobject")
  2003  	&& warnRule(fe.Debug_checknil(), v, "removed nil check")
  2004  	=> (Invalid)
  2005  
  2006  // for late-expanded calls, recognize memequal applied to a single constant byte
  2007  // TODO figure out breakeven number of bytes for this optimization.
  2008  (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [1]) mem)
  2009    && isSameCall(callAux, "runtime.memequal")
  2010    && symIsRO(scon)
  2011    => (MakeResult (Eq8 (Load <typ.Int8> sptr mem) (Const8 <typ.Int8> [int8(read8(scon,0))])) mem)
  2012  
  2013  // Evaluate constant address comparisons.
  2014  (EqPtr  x x) => (ConstBool [true])
  2015  (NeqPtr x x) => (ConstBool [false])
  2016  (EqPtr  (Addr {x} _) (Addr {y} _)) => (ConstBool [x == y])
  2017  (EqPtr  (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x == y && o == 0])
  2018  (EqPtr  (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x == y && o1 == o2])
  2019  (NeqPtr (Addr {x} _) (Addr {y} _)) => (ConstBool [x != y])
  2020  (NeqPtr (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x != y || o != 0])
  2021  (NeqPtr (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x != y || o1 != o2])
  2022  (EqPtr  (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x == y])
  2023  (EqPtr  (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x == y && o == 0])
  2024  (EqPtr  (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x == y && o1 == o2])
  2025  (NeqPtr (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x != y])
  2026  (NeqPtr (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x != y || o != 0])
  2027  (NeqPtr (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x != y || o1 != o2])
  2028  (EqPtr  (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 == 0])
  2029  (NeqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 != 0])
  2030  (EqPtr  (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 == o2])
  2031  (NeqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 != o2])
  2032  (EqPtr  (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c == d])
  2033  (NeqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c != d])
  2034  
  2035  (EqPtr  (LocalAddr _ _) (Addr _)) => (ConstBool [false])
  2036  (EqPtr  (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [false])
  2037  (EqPtr  (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [false])
  2038  (EqPtr  (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [false])
  2039  (NeqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [true])
  2040  (NeqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [true])
  2041  (NeqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [true])
  2042  (NeqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [true])
  2043  
  2044  // Simplify address comparisons.
  2045  (EqPtr  (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (Not (IsNonNil o1))
  2046  (NeqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (IsNonNil o1)
  2047  (EqPtr  (Const(32|64) [0]) p) => (Not (IsNonNil p))
  2048  (NeqPtr (Const(32|64) [0]) p) => (IsNonNil p)
  2049  (EqPtr  (ConstNil) p) => (Not (IsNonNil p))
  2050  (NeqPtr (ConstNil) p) => (IsNonNil p)
  2051  
  2052  // Evaluate constant user nil checks.
  2053  (IsNonNil (ConstNil)) => (ConstBool [false])
  2054  (IsNonNil (Const(32|64) [c])) => (ConstBool [c != 0])
  2055  (IsNonNil (Addr _)) => (ConstBool [true])
  2056  (IsNonNil (LocalAddr _ _)) => (ConstBool [true])
  2057  
  2058  // Inline small or disjoint runtime.memmove calls with constant length.
  2059  // See the comment in op Move in genericOps.go for discussion of the type.
  2060  
  2061  // Because expand calls runs after prove, constants useful to this pattern may not appear.
  2062  // Both versions need to exist; the memory and register variants.
  2063  //
  2064  // Match post-expansion calls, memory version.
  2065  (SelectN [0] call:(StaticCall {sym} s1:(Store _ (Const(64|32) [sz]) s2:(Store  _ src s3:(Store {t} _ dst mem)))))
  2066  	&& sz >= 0
  2067  	&& isSameCall(sym, "runtime.memmove")
  2068  	&& t.IsPtr() // avoids TUNSAFEPTR, see issue 30061
  2069  	&& s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1
  2070  	&& isInlinableMemmove(dst, src, int64(sz), config)
  2071  	&& clobber(s1, s2, s3, call)
  2072  	=> (Move {t.Elem()} [int64(sz)] dst src mem)
  2073  
  2074  // Match post-expansion calls, register version.
  2075  (SelectN [0] call:(StaticCall {sym} dst src (Const(64|32) [sz]) mem))
  2076  	&& sz >= 0
  2077  	&& call.Uses == 1 // this will exclude all calls with results
  2078  	&& isSameCall(sym, "runtime.memmove")
  2079  	&& dst.Type.IsPtr() // avoids TUNSAFEPTR, see issue 30061
  2080  	&& isInlinableMemmove(dst, src, int64(sz), config)
  2081  	&& clobber(call)
  2082  	=> (Move {dst.Type.Elem()} [int64(sz)] dst src mem)
  2083  
  2084  // Match pre-expansion calls.
  2085  (SelectN [0] call:(StaticLECall {sym} dst src (Const(64|32) [sz]) mem))
  2086  	&& sz >= 0
  2087  	&& call.Uses == 1 // this will exclude all calls with results
  2088  	&& isSameCall(sym, "runtime.memmove")
  2089  	&& dst.Type.IsPtr() // avoids TUNSAFEPTR, see issue 30061
  2090  	&& isInlinableMemmove(dst, src, int64(sz), config)
  2091  	&& clobber(call)
  2092  	=> (Move {dst.Type.Elem()} [int64(sz)] dst src mem)
  2093  
  2094  // De-virtualize late-expanded interface calls into late-expanded static calls.
  2095  // Note that (ITab (IMake)) doesn't get rewritten until after the first opt pass,
  2096  // so this rule should trigger reliably.
  2097  // devirtLECall removes the first argument, adds the devirtualized symbol to the AuxCall, and changes the opcode
  2098  (InterLECall [argsize] {auxCall} (Load (OffPtr [off] (ITab (IMake (Addr {itab} (SB)) _))) _) ___) && devirtLESym(v, auxCall, itab, off) !=
  2099      nil => devirtLECall(v, devirtLESym(v, auxCall, itab, off))
  2100  
  2101  // Move and Zero optimizations.
  2102  // Move source and destination may overlap.
  2103  
  2104  // Convert Moves into Zeros when the source is known to be zeros.
  2105  (Move {t} [n] dst1 src mem:(Zero {t} [n] dst2 _)) && isSamePtr(src, dst2)
  2106  	=> (Zero {t} [n] dst1 mem)
  2107  (Move {t} [n] dst1 src mem:(VarDef (Zero {t} [n] dst0 _))) && isSamePtr(src, dst0)
  2108  	=> (Zero {t} [n] dst1 mem)
  2109  (Move {t} [n] dst (Addr {sym} (SB)) mem) && symIsROZero(sym) => (Zero {t} [n] dst mem)
  2110  
  2111  // Don't Store to variables that are about to be overwritten by Move/Zero.
  2112  (Zero {t1} [n] p1 store:(Store {t2} (OffPtr [o2] p2) _ mem))
  2113  	&& isSamePtr(p1, p2) && store.Uses == 1
  2114  	&& n >= o2 + t2.Size()
  2115  	&& clobber(store)
  2116  	=> (Zero {t1} [n] p1 mem)
  2117  (Move {t1} [n] dst1 src1 store:(Store {t2} op:(OffPtr [o2] dst2) _ mem))
  2118  	&& isSamePtr(dst1, dst2) && store.Uses == 1
  2119  	&& n >= o2 + t2.Size()
  2120  	&& disjoint(src1, n, op, t2.Size())
  2121  	&& clobber(store)
  2122  	=> (Move {t1} [n] dst1 src1 mem)
  2123  
  2124  // Don't Move to variables that are immediately completely overwritten.
  2125  (Zero {t} [n] dst1 move:(Move {t} [n] dst2 _ mem))
  2126  	&& move.Uses == 1
  2127  	&& isSamePtr(dst1, dst2)
  2128  	&& clobber(move)
  2129  	=> (Zero {t} [n] dst1 mem)
  2130  (Move {t} [n] dst1 src1 move:(Move {t} [n] dst2 _ mem))
  2131  	&& move.Uses == 1
  2132  	&& isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
  2133  	&& clobber(move)
  2134  	=> (Move {t} [n] dst1 src1 mem)
  2135  (Zero {t} [n] dst1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem)))
  2136  	&& move.Uses == 1 && vardef.Uses == 1
  2137  	&& isSamePtr(dst1, dst2)
  2138  	&& clobber(move, vardef)
  2139  	=> (Zero {t} [n] dst1 (VarDef {x} mem))
  2140  (Move {t} [n] dst1 src1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem)))
  2141  	&& move.Uses == 1 && vardef.Uses == 1
  2142  	&& isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
  2143  	&& clobber(move, vardef)
  2144  	=> (Move {t} [n] dst1 src1 (VarDef {x} mem))
  2145  (Store {t1} op1:(OffPtr [o1] p1) d1
  2146  	m2:(Store {t2} op2:(OffPtr [0] p2) d2
  2147  		m3:(Move [n] p3 _ mem)))
  2148  	&& m2.Uses == 1 && m3.Uses == 1
  2149  	&& o1 == t2.Size()
  2150  	&& n == t2.Size() + t1.Size()
  2151  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2152  	&& clobber(m2, m3)
  2153  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 mem))
  2154  (Store {t1} op1:(OffPtr [o1] p1) d1
  2155  	m2:(Store {t2} op2:(OffPtr [o2] p2) d2
  2156  		m3:(Store {t3} op3:(OffPtr [0] p3) d3
  2157  			m4:(Move [n] p4 _ mem))))
  2158  	&& m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1
  2159  	&& o2 == t3.Size()
  2160  	&& o1-o2 == t2.Size()
  2161  	&& n == t3.Size() + t2.Size() + t1.Size()
  2162  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2163  	&& clobber(m2, m3, m4)
  2164  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem)))
  2165  (Store {t1} op1:(OffPtr [o1] p1) d1
  2166  	m2:(Store {t2} op2:(OffPtr [o2] p2) d2
  2167  		m3:(Store {t3} op3:(OffPtr [o3] p3) d3
  2168  			m4:(Store {t4} op4:(OffPtr [0] p4) d4
  2169  				m5:(Move [n] p5 _ mem)))))
  2170  	&& m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1
  2171  	&& o3 == t4.Size()
  2172  	&& o2-o3 == t3.Size()
  2173  	&& o1-o2 == t2.Size()
  2174  	&& n == t4.Size() + t3.Size() + t2.Size() + t1.Size()
  2175  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2176  	&& clobber(m2, m3, m4, m5)
  2177  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem))))
  2178  
  2179  // Don't Zero variables that are immediately completely overwritten
  2180  // before being accessed.
  2181  (Move {t} [n] dst1 src1 zero:(Zero {t} [n] dst2 mem))
  2182  	&& zero.Uses == 1
  2183  	&& isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
  2184  	&& clobber(zero)
  2185  	=> (Move {t} [n] dst1 src1 mem)
  2186  (Move {t} [n] dst1 src1 vardef:(VarDef {x} zero:(Zero {t} [n] dst2 mem)))
  2187  	&& zero.Uses == 1 && vardef.Uses == 1
  2188  	&& isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
  2189  	&& clobber(zero, vardef)
  2190  	=> (Move {t} [n] dst1 src1 (VarDef {x} mem))
  2191  (Store {t1} op1:(OffPtr [o1] p1) d1
  2192  	m2:(Store {t2} op2:(OffPtr [0] p2) d2
  2193  		m3:(Zero [n] p3 mem)))
  2194  	&& m2.Uses == 1 && m3.Uses == 1
  2195  	&& o1 == t2.Size()
  2196  	&& n == t2.Size() + t1.Size()
  2197  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2198  	&& clobber(m2, m3)
  2199  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 mem))
  2200  (Store {t1} op1:(OffPtr [o1] p1) d1
  2201  	m2:(Store {t2} op2:(OffPtr [o2] p2) d2
  2202  		m3:(Store {t3} op3:(OffPtr [0] p3) d3
  2203  			m4:(Zero [n] p4 mem))))
  2204  	&& m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1
  2205  	&& o2 == t3.Size()
  2206  	&& o1-o2 == t2.Size()
  2207  	&& n == t3.Size() + t2.Size() + t1.Size()
  2208  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2209  	&& clobber(m2, m3, m4)
  2210  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem)))
  2211  (Store {t1} op1:(OffPtr [o1] p1) d1
  2212  	m2:(Store {t2} op2:(OffPtr [o2] p2) d2
  2213  		m3:(Store {t3} op3:(OffPtr [o3] p3) d3
  2214  			m4:(Store {t4} op4:(OffPtr [0] p4) d4
  2215  				m5:(Zero [n] p5 mem)))))
  2216  	&& m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1
  2217  	&& o3 == t4.Size()
  2218  	&& o2-o3 == t3.Size()
  2219  	&& o1-o2 == t2.Size()
  2220  	&& n == t4.Size() + t3.Size() + t2.Size() + t1.Size()
  2221  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2222  	&& clobber(m2, m3, m4, m5)
  2223  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem))))
  2224  
  2225  // Don't Move from memory if the values are likely to already be
  2226  // in registers.
  2227  (Move {t1} [n] dst p1
  2228  	mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2229  		(Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _)))
  2230  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2231  	&& t2.Alignment() <= t1.Alignment()
  2232  	&& t3.Alignment() <= t1.Alignment()
  2233  	&& registerizable(b, t2)
  2234  	&& registerizable(b, t3)
  2235  	&& o2 == t3.Size()
  2236  	&& n == t2.Size() + t3.Size()
  2237  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2238  		(Store {t3} (OffPtr <tt3> [0] dst) d2 mem))
  2239  (Move {t1} [n] dst p1
  2240  	mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2241  		(Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
  2242  			(Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _))))
  2243  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2244  	&& t2.Alignment() <= t1.Alignment()
  2245  	&& t3.Alignment() <= t1.Alignment()
  2246  	&& t4.Alignment() <= t1.Alignment()
  2247  	&& registerizable(b, t2)
  2248  	&& registerizable(b, t3)
  2249  	&& registerizable(b, t4)
  2250  	&& o3 == t4.Size()
  2251  	&& o2-o3 == t3.Size()
  2252  	&& n == t2.Size() + t3.Size() + t4.Size()
  2253  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2254  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2255  			(Store {t4} (OffPtr <tt4> [0] dst) d3 mem)))
  2256  (Move {t1} [n] dst p1
  2257  	mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2258  		(Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
  2259  			(Store {t4} op4:(OffPtr <tt4> [o4] p4) d3
  2260  				(Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _)))))
  2261  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2262  	&& t2.Alignment() <= t1.Alignment()
  2263  	&& t3.Alignment() <= t1.Alignment()
  2264  	&& t4.Alignment() <= t1.Alignment()
  2265  	&& t5.Alignment() <= t1.Alignment()
  2266  	&& registerizable(b, t2)
  2267  	&& registerizable(b, t3)
  2268  	&& registerizable(b, t4)
  2269  	&& registerizable(b, t5)
  2270  	&& o4 == t5.Size()
  2271  	&& o3-o4 == t4.Size()
  2272  	&& o2-o3 == t3.Size()
  2273  	&& n == t2.Size() + t3.Size() + t4.Size() + t5.Size()
  2274  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2275  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2276  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2277  				(Store {t5} (OffPtr <tt5> [0] dst) d4 mem))))
  2278  
  2279  // Same thing but with VarDef in the middle.
  2280  (Move {t1} [n] dst p1
  2281  	mem:(VarDef
  2282  		(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2283  			(Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _))))
  2284  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2285  	&& t2.Alignment() <= t1.Alignment()
  2286  	&& t3.Alignment() <= t1.Alignment()
  2287  	&& registerizable(b, t2)
  2288  	&& registerizable(b, t3)
  2289  	&& o2 == t3.Size()
  2290  	&& n == t2.Size() + t3.Size()
  2291  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2292  		(Store {t3} (OffPtr <tt3> [0] dst) d2 mem))
  2293  (Move {t1} [n] dst p1
  2294  	mem:(VarDef
  2295  		(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2296  			(Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
  2297  				(Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _)))))
  2298  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2299  	&& t2.Alignment() <= t1.Alignment()
  2300  	&& t3.Alignment() <= t1.Alignment()
  2301  	&& t4.Alignment() <= t1.Alignment()
  2302  	&& registerizable(b, t2)
  2303  	&& registerizable(b, t3)
  2304  	&& registerizable(b, t4)
  2305  	&& o3 == t4.Size()
  2306  	&& o2-o3 == t3.Size()
  2307  	&& n == t2.Size() + t3.Size() + t4.Size()
  2308  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2309  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2310  			(Store {t4} (OffPtr <tt4> [0] dst) d3 mem)))
  2311  (Move {t1} [n] dst p1
  2312  	mem:(VarDef
  2313  		(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2314  			(Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
  2315  				(Store {t4} op4:(OffPtr <tt4> [o4] p4) d3
  2316  					(Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _))))))
  2317  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2318  	&& t2.Alignment() <= t1.Alignment()
  2319  	&& t3.Alignment() <= t1.Alignment()
  2320  	&& t4.Alignment() <= t1.Alignment()
  2321  	&& t5.Alignment() <= t1.Alignment()
  2322  	&& registerizable(b, t2)
  2323  	&& registerizable(b, t3)
  2324  	&& registerizable(b, t4)
  2325  	&& registerizable(b, t5)
  2326  	&& o4 == t5.Size()
  2327  	&& o3-o4 == t4.Size()
  2328  	&& o2-o3 == t3.Size()
  2329  	&& n == t2.Size() + t3.Size() + t4.Size() + t5.Size()
  2330  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2331  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2332  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2333  				(Store {t5} (OffPtr <tt5> [0] dst) d4 mem))))
  2334  
  2335  // Prefer to Zero and Store than to Move.
  2336  (Move {t1} [n] dst p1
  2337  	mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2338  		(Zero {t3} [n] p3 _)))
  2339  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2340  	&& t2.Alignment() <= t1.Alignment()
  2341  	&& t3.Alignment() <= t1.Alignment()
  2342  	&& registerizable(b, t2)
  2343  	&& n >= o2 + t2.Size()
  2344  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2345  		(Zero {t1} [n] dst mem))
  2346  (Move {t1} [n] dst p1
  2347  	mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2348  		(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2349  			(Zero {t4} [n] p4 _))))
  2350  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2351  	&& t2.Alignment() <= t1.Alignment()
  2352  	&& t3.Alignment() <= t1.Alignment()
  2353  	&& t4.Alignment() <= t1.Alignment()
  2354  	&& registerizable(b, t2)
  2355  	&& registerizable(b, t3)
  2356  	&& n >= o2 + t2.Size()
  2357  	&& n >= o3 + t3.Size()
  2358  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2359  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2360  			(Zero {t1} [n] dst mem)))
  2361  (Move {t1} [n] dst p1
  2362  	mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2363  		(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2364  			(Store {t4} (OffPtr <tt4> [o4] p4) d3
  2365  				(Zero {t5} [n] p5 _)))))
  2366  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2367  	&& t2.Alignment() <= t1.Alignment()
  2368  	&& t3.Alignment() <= t1.Alignment()
  2369  	&& t4.Alignment() <= t1.Alignment()
  2370  	&& t5.Alignment() <= t1.Alignment()
  2371  	&& registerizable(b, t2)
  2372  	&& registerizable(b, t3)
  2373  	&& registerizable(b, t4)
  2374  	&& n >= o2 + t2.Size()
  2375  	&& n >= o3 + t3.Size()
  2376  	&& n >= o4 + t4.Size()
  2377  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2378  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2379  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2380  				(Zero {t1} [n] dst mem))))
  2381  (Move {t1} [n] dst p1
  2382  	mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2383  		(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2384  			(Store {t4} (OffPtr <tt4> [o4] p4) d3
  2385  				(Store {t5} (OffPtr <tt5> [o5] p5) d4
  2386  					(Zero {t6} [n] p6 _))))))
  2387  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6)
  2388  	&& t2.Alignment() <= t1.Alignment()
  2389  	&& t3.Alignment() <= t1.Alignment()
  2390  	&& t4.Alignment() <= t1.Alignment()
  2391  	&& t5.Alignment() <= t1.Alignment()
  2392  	&& t6.Alignment() <= t1.Alignment()
  2393  	&& registerizable(b, t2)
  2394  	&& registerizable(b, t3)
  2395  	&& registerizable(b, t4)
  2396  	&& registerizable(b, t5)
  2397  	&& n >= o2 + t2.Size()
  2398  	&& n >= o3 + t3.Size()
  2399  	&& n >= o4 + t4.Size()
  2400  	&& n >= o5 + t5.Size()
  2401  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2402  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2403  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2404  				(Store {t5} (OffPtr <tt5> [o5] dst) d4
  2405  					(Zero {t1} [n] dst mem)))))
  2406  (Move {t1} [n] dst p1
  2407  	mem:(VarDef
  2408  		(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2409  			(Zero {t3} [n] p3 _))))
  2410  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2411  	&& t2.Alignment() <= t1.Alignment()
  2412  	&& t3.Alignment() <= t1.Alignment()
  2413  	&& registerizable(b, t2)
  2414  	&& n >= o2 + t2.Size()
  2415  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2416  		(Zero {t1} [n] dst mem))
  2417  (Move {t1} [n] dst p1
  2418  	mem:(VarDef
  2419  		(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2420  			(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2421  				(Zero {t4} [n] p4 _)))))
  2422  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2423  	&& t2.Alignment() <= t1.Alignment()
  2424  	&& t3.Alignment() <= t1.Alignment()
  2425  	&& t4.Alignment() <= t1.Alignment()
  2426  	&& registerizable(b, t2)
  2427  	&& registerizable(b, t3)
  2428  	&& n >= o2 + t2.Size()
  2429  	&& n >= o3 + t3.Size()
  2430  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2431  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2432  			(Zero {t1} [n] dst mem)))
  2433  (Move {t1} [n] dst p1
  2434  	mem:(VarDef
  2435  		(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2436  			(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2437  				(Store {t4} (OffPtr <tt4> [o4] p4) d3
  2438  					(Zero {t5} [n] p5 _))))))
  2439  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2440  	&& t2.Alignment() <= t1.Alignment()
  2441  	&& t3.Alignment() <= t1.Alignment()
  2442  	&& t4.Alignment() <= t1.Alignment()
  2443  	&& t5.Alignment() <= t1.Alignment()
  2444  	&& registerizable(b, t2)
  2445  	&& registerizable(b, t3)
  2446  	&& registerizable(b, t4)
  2447  	&& n >= o2 + t2.Size()
  2448  	&& n >= o3 + t3.Size()
  2449  	&& n >= o4 + t4.Size()
  2450  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2451  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2452  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2453  				(Zero {t1} [n] dst mem))))
  2454  (Move {t1} [n] dst p1
  2455  	mem:(VarDef
  2456  		(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2457  			(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2458  				(Store {t4} (OffPtr <tt4> [o4] p4) d3
  2459  					(Store {t5} (OffPtr <tt5> [o5] p5) d4
  2460  						(Zero {t6} [n] p6 _)))))))
  2461  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6)
  2462  	&& t2.Alignment() <= t1.Alignment()
  2463  	&& t3.Alignment() <= t1.Alignment()
  2464  	&& t4.Alignment() <= t1.Alignment()
  2465  	&& t5.Alignment() <= t1.Alignment()
  2466  	&& t6.Alignment() <= t1.Alignment()
  2467  	&& registerizable(b, t2)
  2468  	&& registerizable(b, t3)
  2469  	&& registerizable(b, t4)
  2470  	&& registerizable(b, t5)
  2471  	&& n >= o2 + t2.Size()
  2472  	&& n >= o3 + t3.Size()
  2473  	&& n >= o4 + t4.Size()
  2474  	&& n >= o5 + t5.Size()
  2475  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2476  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2477  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2478  				(Store {t5} (OffPtr <tt5> [o5] dst) d4
  2479  					(Zero {t1} [n] dst mem)))))
  2480  
  2481  (SelectN [0] call:(StaticLECall {sym} a x)) && needRaceCleanup(sym, call) && clobber(call) => x
  2482  (SelectN [0] call:(StaticLECall {sym} x)) && needRaceCleanup(sym, call) && clobber(call) => x
  2483  
  2484  // Collapse moving A -> B -> C into just A -> C.
  2485  // Later passes (deadstore, elim unread auto) will remove the A -> B move, if possible.
  2486  // This happens most commonly when B is an autotmp inserted earlier
  2487  // during compilation to ensure correctness.
  2488  // Take care that overlapping moves are preserved.
  2489  // Restrict this optimization to the stack, to avoid duplicating loads from the heap;
  2490  // see CL 145208 for discussion.
  2491  (Move {t1} [s] dst tmp1 midmem:(Move {t2} [s] tmp2 src _))
  2492  	&& t1.Compare(t2) == types.CMPeq
  2493  	&& isSamePtr(tmp1, tmp2)
  2494  	&& isStackPtr(src) && !isVolatile(src)
  2495  	&& disjoint(src, s, tmp2, s)
  2496  	&& (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config))
  2497  	=> (Move {t1} [s] dst src midmem)
  2498  
  2499  // Same, but for large types that require VarDefs.
  2500  (Move {t1} [s] dst tmp1 midmem:(VarDef (Move {t2} [s] tmp2 src _)))
  2501  	&& t1.Compare(t2) == types.CMPeq
  2502  	&& isSamePtr(tmp1, tmp2)
  2503  	&& isStackPtr(src) && !isVolatile(src)
  2504  	&& disjoint(src, s, tmp2, s)
  2505  	&& (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config))
  2506  	=> (Move {t1} [s] dst src midmem)
  2507  
  2508  // Don't zero the same bits twice.
  2509  (Zero {t} [s] dst1 zero:(Zero {t} [s] dst2 _)) && isSamePtr(dst1, dst2) => zero
  2510  (Zero {t} [s] dst1 vardef:(VarDef (Zero {t} [s] dst2 _))) && isSamePtr(dst1, dst2) => vardef
  2511  
  2512  // Elide self-moves. This only happens rarely (e.g test/fixedbugs/bug277.go).
  2513  // However, this rule is needed to prevent the previous rule from looping forever in such cases.
  2514  (Move dst src mem) && isSamePtr(dst, src) => mem
  2515  

View as plain text