// Copyright 2017 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ld import ( intdwarf "cmd/internal/dwarf" objfilepkg "cmd/internal/objfile" // renamed to avoid conflict with objfile function "debug/dwarf" "debug/pe" "errors" "fmt" "internal/testenv" "io" "io/ioutil" "os" "os/exec" "path/filepath" "reflect" "runtime" "sort" "strconv" "strings" "testing" ) const ( DefaultOpt = "-gcflags=" NoOpt = "-gcflags=-l -N" OptInl4 = "-gcflags=-l=4" OptAllInl4 = "-gcflags=all=-l=4" ) func TestRuntimeTypesPresent(t *testing.T) { t.Parallel() testenv.MustHaveGoBuild(t) if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } dir := t.TempDir() f := gobuild(t, dir, `package main; func main() { }`, NoOpt) defer f.Close() dwarf, err := f.DWARF() if err != nil { t.Fatalf("error reading DWARF: %v", err) } want := map[string]bool{ "runtime._type": true, "runtime.arraytype": true, "runtime.chantype": true, "runtime.functype": true, "runtime.maptype": true, "runtime.ptrtype": true, "runtime.slicetype": true, "runtime.structtype": true, "runtime.interfacetype": true, "runtime.itab": true, "runtime.imethod": true, } found := findTypes(t, dwarf, want) if len(found) != len(want) { t.Errorf("found %v, want %v", found, want) } } func findTypes(t *testing.T, dw *dwarf.Data, want map[string]bool) (found map[string]bool) { found = make(map[string]bool) rdr := dw.Reader() for entry, err := rdr.Next(); entry != nil; entry, err = rdr.Next() { if err != nil { t.Fatalf("error reading DWARF: %v", err) } switch entry.Tag { case dwarf.TagTypedef: if name, ok := entry.Val(dwarf.AttrName).(string); ok && want[name] { found[name] = true } } } return } type builtFile struct { *objfilepkg.File path string } func gobuild(t *testing.T, dir string, testfile string, gcflags string) *builtFile { src := filepath.Join(dir, "test.go") dst := filepath.Join(dir, "out.exe") if err := ioutil.WriteFile(src, []byte(testfile), 0666); err != nil { t.Fatal(err) } cmd := exec.Command(testenv.GoToolPath(t), "build", gcflags, "-o", dst, src) if b, err := cmd.CombinedOutput(); err != nil { t.Logf("build: %s\n", b) t.Fatalf("build error: %v", err) } f, err := objfilepkg.Open(dst) if err != nil { t.Fatal(err) } return &builtFile{f, dst} } // Similar to gobuild() above, but uses a main package instead of a test.go file. func gobuildTestdata(t *testing.T, tdir string, pkgDir string, gcflags string) *builtFile { dst := filepath.Join(tdir, "out.exe") // Run a build with an updated GOPATH cmd := exec.Command(testenv.GoToolPath(t), "build", gcflags, "-o", dst) cmd.Dir = pkgDir if b, err := cmd.CombinedOutput(); err != nil { t.Logf("build: %s\n", b) t.Fatalf("build error: %v", err) } f, err := objfilepkg.Open(dst) if err != nil { t.Fatal(err) } return &builtFile{f, dst} } func TestEmbeddedStructMarker(t *testing.T) { t.Parallel() testenv.MustHaveGoBuild(t) if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } const prog = ` package main import "fmt" type Foo struct { v int } type Bar struct { Foo name string } type Baz struct { *Foo name string } func main() { bar := Bar{ Foo: Foo{v: 123}, name: "onetwothree"} baz := Baz{ Foo: &bar.Foo, name: "123" } fmt.Println(bar, baz) }` want := map[string]map[string]bool{ "main.Foo": {"v": false}, "main.Bar": {"Foo": true, "name": false}, "main.Baz": {"Foo": true, "name": false}, } dir := t.TempDir() f := gobuild(t, dir, prog, NoOpt) defer f.Close() d, err := f.DWARF() if err != nil { t.Fatalf("error reading DWARF: %v", err) } rdr := d.Reader() for entry, err := rdr.Next(); entry != nil; entry, err = rdr.Next() { if err != nil { t.Fatalf("error reading DWARF: %v", err) } switch entry.Tag { case dwarf.TagStructType: name := entry.Val(dwarf.AttrName).(string) wantMembers := want[name] if wantMembers == nil { continue } gotMembers, err := findMembers(rdr) if err != nil { t.Fatalf("error reading DWARF: %v", err) } if !reflect.DeepEqual(gotMembers, wantMembers) { t.Errorf("type %v: got map[member]embedded = %+v, want %+v", name, wantMembers, gotMembers) } delete(want, name) } } if len(want) != 0 { t.Errorf("failed to check all expected types: missing types = %+v", want) } } func findMembers(rdr *dwarf.Reader) (map[string]bool, error) { memberEmbedded := map[string]bool{} // TODO(hyangah): define in debug/dwarf package const goEmbeddedStruct = dwarf.Attr(intdwarf.DW_AT_go_embedded_field) for entry, err := rdr.Next(); entry != nil; entry, err = rdr.Next() { if err != nil { return nil, err } switch entry.Tag { case dwarf.TagMember: name := entry.Val(dwarf.AttrName).(string) embedded := entry.Val(goEmbeddedStruct).(bool) memberEmbedded[name] = embedded case 0: return memberEmbedded, nil } } return memberEmbedded, nil } func TestSizes(t *testing.T) { if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } // External linking may bring in C symbols with unknown size. Skip. testenv.MustInternalLink(t) t.Parallel() // DWARF sizes should never be -1. // See issue #21097 const prog = ` package main var x func() var y [4]func() func main() { x = nil y[0] = nil } ` dir := t.TempDir() f := gobuild(t, dir, prog, NoOpt) defer f.Close() d, err := f.DWARF() if err != nil { t.Fatalf("error reading DWARF: %v", err) } rdr := d.Reader() for entry, err := rdr.Next(); entry != nil; entry, err = rdr.Next() { if err != nil { t.Fatalf("error reading DWARF: %v", err) } switch entry.Tag { case dwarf.TagArrayType, dwarf.TagPointerType, dwarf.TagStructType, dwarf.TagBaseType, dwarf.TagSubroutineType, dwarf.TagTypedef: default: continue } typ, err := d.Type(entry.Offset) if err != nil { t.Fatalf("can't read type: %v", err) } if typ.Size() < 0 { t.Errorf("subzero size %s %s %T", typ, entry.Tag, typ) } } } func TestFieldOverlap(t *testing.T) { if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } t.Parallel() // This test grew out of issue 21094, where specific sudog DWARF types // had elem fields set to values instead of pointers. const prog = ` package main var c chan string func main() { c <- "foo" } ` dir := t.TempDir() f := gobuild(t, dir, prog, NoOpt) defer f.Close() d, err := f.DWARF() if err != nil { t.Fatalf("error reading DWARF: %v", err) } rdr := d.Reader() for entry, err := rdr.Next(); entry != nil; entry, err = rdr.Next() { if err != nil { t.Fatalf("error reading DWARF: %v", err) } if entry.Tag != dwarf.TagStructType { continue } typ, err := d.Type(entry.Offset) if err != nil { t.Fatalf("can't read type: %v", err) } s := typ.(*dwarf.StructType) for i := 0; i < len(s.Field); i++ { end := s.Field[i].ByteOffset + s.Field[i].Type.Size() var limit int64 if i == len(s.Field)-1 { limit = s.Size() } else { limit = s.Field[i+1].ByteOffset } if end > limit { name := entry.Val(dwarf.AttrName).(string) t.Fatalf("field %s.%s overlaps next field", name, s.Field[i].Name) } } } } func varDeclCoordsAndSubrogramDeclFile(t *testing.T, testpoint string, expectFile string, expectLine int, directive string) { t.Parallel() prog := fmt.Sprintf("package main\n%s\nfunc main() {\n\nvar i int\ni = i\n}\n", directive) dir := t.TempDir() f := gobuild(t, dir, prog, NoOpt) defer f.Close() d, err := f.DWARF() if err != nil { t.Fatalf("error reading DWARF: %v", err) } rdr := d.Reader() ex := examiner{} if err := ex.populate(rdr); err != nil { t.Fatalf("error reading DWARF: %v", err) } // Locate the main.main DIE mains := ex.Named("main.main") if len(mains) == 0 { t.Fatalf("unable to locate DIE for main.main") } if len(mains) != 1 { t.Fatalf("more than one main.main DIE") } maindie := mains[0] // Vet the main.main DIE if maindie.Tag != dwarf.TagSubprogram { t.Fatalf("unexpected tag %v on main.main DIE", maindie.Tag) } // Walk main's children and select variable "i". mainIdx := ex.idxFromOffset(maindie.Offset) childDies := ex.Children(mainIdx) var iEntry *dwarf.Entry for _, child := range childDies { if child.Tag == dwarf.TagVariable && child.Val(dwarf.AttrName).(string) == "i" { iEntry = child break } } if iEntry == nil { t.Fatalf("didn't find DW_TAG_variable for i in main.main") } // Verify line/file attributes. line := iEntry.Val(dwarf.AttrDeclLine) if line == nil || line.(int64) != int64(expectLine) { t.Errorf("DW_AT_decl_line for i is %v, want %d", line, expectLine) } fileIdx, fileIdxOK := maindie.Val(dwarf.AttrDeclFile).(int64) if !fileIdxOK { t.Errorf("missing or invalid DW_AT_decl_file for main") } file := ex.FileRef(t, d, mainIdx, fileIdx) base := filepath.Base(file) if base != expectFile { t.Errorf("DW_AT_decl_file for main is %v, want %v", base, expectFile) } } func TestVarDeclCoordsAndSubrogramDeclFile(t *testing.T) { testenv.MustHaveGoBuild(t) if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } varDeclCoordsAndSubrogramDeclFile(t, "TestVarDeclCoords", "test.go", 5, "") } func TestVarDeclCoordsWithLineDirective(t *testing.T) { testenv.MustHaveGoBuild(t) if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } varDeclCoordsAndSubrogramDeclFile(t, "TestVarDeclCoordsWithLineDirective", "foobar.go", 202, "//line /foobar.go:200") } // Helper class for supporting queries on DIEs within a DWARF .debug_info // section. Invoke the populate() method below passing in a dwarf.Reader, // which will read in all DIEs and keep track of parent/child // relationships. Queries can then be made to ask for DIEs by name or // by offset. This will hopefully reduce boilerplate for future test // writing. type examiner struct { dies []*dwarf.Entry idxByOffset map[dwarf.Offset]int kids map[int][]int parent map[int]int byname map[string][]int } // Populate the examiner using the DIEs read from rdr. func (ex *examiner) populate(rdr *dwarf.Reader) error { ex.idxByOffset = make(map[dwarf.Offset]int) ex.kids = make(map[int][]int) ex.parent = make(map[int]int) ex.byname = make(map[string][]int) var nesting []int for entry, err := rdr.Next(); entry != nil; entry, err = rdr.Next() { if err != nil { return err } if entry.Tag == 0 { // terminator if len(nesting) == 0 { return errors.New("nesting stack underflow") } nesting = nesting[:len(nesting)-1] continue } idx := len(ex.dies) ex.dies = append(ex.dies, entry) if _, found := ex.idxByOffset[entry.Offset]; found { return errors.New("DIE clash on offset") } ex.idxByOffset[entry.Offset] = idx if name, ok := entry.Val(dwarf.AttrName).(string); ok { ex.byname[name] = append(ex.byname[name], idx) } if len(nesting) > 0 { parent := nesting[len(nesting)-1] ex.kids[parent] = append(ex.kids[parent], idx) ex.parent[idx] = parent } if entry.Children { nesting = append(nesting, idx) } } if len(nesting) > 0 { return errors.New("unterminated child sequence") } return nil } func indent(ilevel int) { for i := 0; i < ilevel; i++ { fmt.Printf(" ") } } // For debugging new tests func (ex *examiner) dumpEntry(idx int, dumpKids bool, ilevel int) error { if idx >= len(ex.dies) { msg := fmt.Sprintf("bad DIE %d: index out of range\n", idx) return errors.New(msg) } entry := ex.dies[idx] indent(ilevel) fmt.Printf("0x%x: %v\n", idx, entry.Tag) for _, f := range entry.Field { indent(ilevel) fmt.Printf("at=%v val=0x%x\n", f.Attr, f.Val) } if dumpKids { ksl := ex.kids[idx] for _, k := range ksl { ex.dumpEntry(k, true, ilevel+2) } } return nil } // Given a DIE offset, return the previously read dwarf.Entry, or nil func (ex *examiner) entryFromOffset(off dwarf.Offset) *dwarf.Entry { if idx, found := ex.idxByOffset[off]; found && idx != -1 { return ex.entryFromIdx(idx) } return nil } // Return the ID that examiner uses to refer to the DIE at offset off func (ex *examiner) idxFromOffset(off dwarf.Offset) int { if idx, found := ex.idxByOffset[off]; found { return idx } return -1 } // Return the dwarf.Entry pointer for the DIE with id 'idx' func (ex *examiner) entryFromIdx(idx int) *dwarf.Entry { if idx >= len(ex.dies) || idx < 0 { return nil } return ex.dies[idx] } // Returns a list of child entries for a die with ID 'idx' func (ex *examiner) Children(idx int) []*dwarf.Entry { sl := ex.kids[idx] ret := make([]*dwarf.Entry, len(sl)) for i, k := range sl { ret[i] = ex.entryFromIdx(k) } return ret } // Returns parent DIE for DIE 'idx', or nil if the DIE is top level func (ex *examiner) Parent(idx int) *dwarf.Entry { p, found := ex.parent[idx] if !found { return nil } return ex.entryFromIdx(p) } // ParentCU returns the enclosing compilation unit DIE for the DIE // with a given index, or nil if for some reason we can't establish a // parent. func (ex *examiner) ParentCU(idx int) *dwarf.Entry { for { parentDie := ex.Parent(idx) if parentDie == nil { return nil } if parentDie.Tag == dwarf.TagCompileUnit { return parentDie } idx = ex.idxFromOffset(parentDie.Offset) } } // FileRef takes a given DIE by index and a numeric file reference // (presumably from a decl_file or call_file attribute), looks up the // reference in the .debug_line file table, and returns the proper // string for it. We need to know which DIE is making the reference // so as find the right compilation unit. func (ex *examiner) FileRef(t *testing.T, dw *dwarf.Data, dieIdx int, fileRef int64) string { // Find the parent compilation unit DIE for the specified DIE. cuDie := ex.ParentCU(dieIdx) if cuDie == nil { t.Fatalf("no parent CU DIE for DIE with idx %d?", dieIdx) return "" } // Construct a line reader and then use it to get the file string. lr, lrerr := dw.LineReader(cuDie) if lrerr != nil { t.Fatal("d.LineReader: ", lrerr) return "" } files := lr.Files() if fileRef < 0 || int(fileRef) > len(files)-1 { t.Fatalf("examiner.FileRef: malformed file reference %d", fileRef) return "" } return files[fileRef].Name } // Return a list of all DIEs with name 'name'. When searching for DIEs // by name, keep in mind that the returned results will include child // DIEs such as params/variables. For example, asking for all DIEs named // "p" for even a small program will give you 400-500 entries. func (ex *examiner) Named(name string) []*dwarf.Entry { sl := ex.byname[name] ret := make([]*dwarf.Entry, len(sl)) for i, k := range sl { ret[i] = ex.entryFromIdx(k) } return ret } func TestInlinedRoutineRecords(t *testing.T) { testenv.MustHaveGoBuild(t) if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } if runtime.GOOS == "solaris" || runtime.GOOS == "illumos" { t.Skip("skipping on solaris, illumos, pending resolution of issue #23168") } t.Parallel() const prog = ` package main var G int func noinline(x int) int { defer func() { G += x }() return x } func cand(x, y int) int { return noinline(x+y) ^ (y - x) } func main() { x := cand(G*G,G|7%G) G = x } ` dir := t.TempDir() // Note: this is a build with "-l=4", as opposed to "-l -N". The // test is intended to verify DWARF that is only generated when // the inliner is active. We're only going to look at the DWARF for // main.main, however, hence we build with "-gcflags=-l=4" as opposed // to "-gcflags=all=-l=4". f := gobuild(t, dir, prog, OptInl4) defer f.Close() d, err := f.DWARF() if err != nil { t.Fatalf("error reading DWARF: %v", err) } // The inlined subroutines we expect to visit expectedInl := []string{"main.cand"} rdr := d.Reader() ex := examiner{} if err := ex.populate(rdr); err != nil { t.Fatalf("error reading DWARF: %v", err) } // Locate the main.main DIE mains := ex.Named("main.main") if len(mains) == 0 { t.Fatalf("unable to locate DIE for main.main") } if len(mains) != 1 { t.Fatalf("more than one main.main DIE") } maindie := mains[0] // Vet the main.main DIE if maindie.Tag != dwarf.TagSubprogram { t.Fatalf("unexpected tag %v on main.main DIE", maindie.Tag) } // Walk main's children and pick out the inlined subroutines mainIdx := ex.idxFromOffset(maindie.Offset) childDies := ex.Children(mainIdx) exCount := 0 for _, child := range childDies { if child.Tag == dwarf.TagInlinedSubroutine { // Found an inlined subroutine, locate abstract origin. ooff, originOK := child.Val(dwarf.AttrAbstractOrigin).(dwarf.Offset) if !originOK { t.Fatalf("no abstract origin attr for inlined subroutine at offset %v", child.Offset) } originDIE := ex.entryFromOffset(ooff) if originDIE == nil { t.Fatalf("can't locate origin DIE at off %v", ooff) } // Walk the children of the abstract subroutine. We expect // to see child variables there, even if (perhaps due to // optimization) there are no references to them from the // inlined subroutine DIE. absFcnIdx := ex.idxFromOffset(ooff) absFcnChildDies := ex.Children(absFcnIdx) if len(absFcnChildDies) != 2 { t.Fatalf("expected abstract function: expected 2 children, got %d children", len(absFcnChildDies)) } formalCount := 0 for _, absChild := range absFcnChildDies { if absChild.Tag == dwarf.TagFormalParameter { formalCount += 1 continue } t.Fatalf("abstract function child DIE: expected formal, got %v", absChild.Tag) } if formalCount != 2 { t.Fatalf("abstract function DIE: expected 2 formals, got %d", formalCount) } if exCount >= len(expectedInl) { t.Fatalf("too many inlined subroutines found in main.main") } // Name should check out. expected := expectedInl[exCount] if name, ok := originDIE.Val(dwarf.AttrName).(string); ok { if name != expected { t.Fatalf("expected inlined routine %s got %s", name, expected) } } exCount++ // Verify that the call_file attribute for the inlined // instance is ok. In this case it should match the file // for the main routine. To do this we need to locate the // compilation unit DIE that encloses what we're looking // at; this can be done with the examiner. cf, cfOK := child.Val(dwarf.AttrCallFile).(int64) if !cfOK { t.Fatalf("no call_file attr for inlined subroutine at offset %v", child.Offset) } file := ex.FileRef(t, d, mainIdx, cf) base := filepath.Base(file) if base != "test.go" { t.Errorf("bad call_file attribute, found '%s', want '%s'", file, "test.go") } omap := make(map[dwarf.Offset]bool) // Walk the child variables of the inlined routine. Each // of them should have a distinct abstract origin-- if two // vars point to the same origin things are definitely broken. inlIdx := ex.idxFromOffset(child.Offset) inlChildDies := ex.Children(inlIdx) for _, k := range inlChildDies { ooff, originOK := k.Val(dwarf.AttrAbstractOrigin).(dwarf.Offset) if !originOK { t.Fatalf("no abstract origin attr for child of inlined subroutine at offset %v", k.Offset) } if _, found := omap[ooff]; found { t.Fatalf("duplicate abstract origin at child of inlined subroutine at offset %v", k.Offset) } omap[ooff] = true } } } if exCount != len(expectedInl) { t.Fatalf("not enough inlined subroutines found in main.main") } } func abstractOriginSanity(t *testing.T, pkgDir string, flags string) { t.Parallel() dir := t.TempDir() // Build with inlining, to exercise DWARF inlining support. f := gobuildTestdata(t, dir, filepath.Join(pkgDir, "main"), flags) defer f.Close() d, err := f.DWARF() if err != nil { t.Fatalf("error reading DWARF: %v", err) } rdr := d.Reader() ex := examiner{} if err := ex.populate(rdr); err != nil { t.Fatalf("error reading DWARF: %v", err) } // Make a pass through all DIEs looking for abstract origin // references. abscount := 0 for i, die := range ex.dies { // Does it have an abstract origin? ooff, originOK := die.Val(dwarf.AttrAbstractOrigin).(dwarf.Offset) if !originOK { continue } // All abstract origin references should be resolvable. abscount += 1 originDIE := ex.entryFromOffset(ooff) if originDIE == nil { ex.dumpEntry(i, false, 0) t.Fatalf("unresolved abstract origin ref in DIE at offset 0x%x\n", die.Offset) } // Suppose that DIE X has parameter/variable children {K1, // K2, ... KN}. If X has an abstract origin of A, then for // each KJ, the abstract origin of KJ should be a child of A. // Note that this same rule doesn't hold for non-variable DIEs. pidx := ex.idxFromOffset(die.Offset) if pidx < 0 { t.Fatalf("can't locate DIE id") } kids := ex.Children(pidx) for _, kid := range kids { if kid.Tag != dwarf.TagVariable && kid.Tag != dwarf.TagFormalParameter { continue } kooff, originOK := kid.Val(dwarf.AttrAbstractOrigin).(dwarf.Offset) if !originOK { continue } childOriginDIE := ex.entryFromOffset(kooff) if childOriginDIE == nil { ex.dumpEntry(i, false, 0) t.Fatalf("unresolved abstract origin ref in DIE at offset %x", kid.Offset) } coidx := ex.idxFromOffset(childOriginDIE.Offset) childOriginParent := ex.Parent(coidx) if childOriginParent != originDIE { ex.dumpEntry(i, false, 0) t.Fatalf("unexpected parent of abstract origin DIE at offset %v", childOriginDIE.Offset) } } } if abscount == 0 { t.Fatalf("no abstract origin refs found, something is wrong") } } func TestAbstractOriginSanity(t *testing.T) { testenv.MustHaveGoBuild(t) if testing.Short() { t.Skip("skipping test in short mode.") } if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } if runtime.GOOS == "solaris" || runtime.GOOS == "illumos" { t.Skip("skipping on solaris, illumos, pending resolution of issue #23168") } if wd, err := os.Getwd(); err == nil { gopathdir := filepath.Join(wd, "testdata", "httptest") abstractOriginSanity(t, gopathdir, OptAllInl4) } else { t.Fatalf("os.Getwd() failed %v", err) } } func TestAbstractOriginSanityIssue25459(t *testing.T) { testenv.MustHaveGoBuild(t) if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } if runtime.GOOS == "solaris" || runtime.GOOS == "illumos" { t.Skip("skipping on solaris, illumos, pending resolution of issue #23168") } if runtime.GOARCH != "amd64" && runtime.GOARCH != "386" { t.Skip("skipping on not-amd64 not-386; location lists not supported") } if wd, err := os.Getwd(); err == nil { gopathdir := filepath.Join(wd, "testdata", "issue25459") abstractOriginSanity(t, gopathdir, DefaultOpt) } else { t.Fatalf("os.Getwd() failed %v", err) } } func TestAbstractOriginSanityIssue26237(t *testing.T) { testenv.MustHaveGoBuild(t) if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } if runtime.GOOS == "solaris" || runtime.GOOS == "illumos" { t.Skip("skipping on solaris, illumos, pending resolution of issue #23168") } if wd, err := os.Getwd(); err == nil { gopathdir := filepath.Join(wd, "testdata", "issue26237") abstractOriginSanity(t, gopathdir, DefaultOpt) } else { t.Fatalf("os.Getwd() failed %v", err) } } func TestRuntimeTypeAttrInternal(t *testing.T) { testenv.MustHaveGoBuild(t) testenv.MustInternalLink(t) if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } if runtime.GOOS == "windows" { t.Skip("skipping on windows; test is incompatible with relocatable binaries") } testRuntimeTypeAttr(t, "-ldflags=-linkmode=internal") } // External linking requires a host linker (https://golang.org/src/cmd/cgo/doc.go l.732) func TestRuntimeTypeAttrExternal(t *testing.T) { testenv.MustHaveGoBuild(t) testenv.MustHaveCGO(t) if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } // Explicitly test external linking, for dsymutil compatibility on Darwin. if runtime.GOARCH == "ppc64" { t.Skip("-linkmode=external not supported on ppc64") } if runtime.GOOS == "windows" { t.Skip("skipping on windows; test is incompatible with relocatable binaries") } testRuntimeTypeAttr(t, "-ldflags=-linkmode=external") } func testRuntimeTypeAttr(t *testing.T, flags string) { t.Parallel() const prog = ` package main import "unsafe" type X struct{ _ int } func main() { var x interface{} = &X{} p := *(*uintptr)(unsafe.Pointer(&x)) print(p) } ` dir := t.TempDir() f := gobuild(t, dir, prog, flags) defer f.Close() out, err := exec.Command(f.path).CombinedOutput() if err != nil { t.Fatalf("could not run test program: %v", err) } addr, err := strconv.ParseUint(string(out), 10, 64) if err != nil { t.Fatalf("could not parse type address from program output %q: %v", out, err) } symbols, err := f.Symbols() if err != nil { t.Fatalf("error reading symbols: %v", err) } var types *objfilepkg.Sym for _, sym := range symbols { if sym.Name == "runtime.types" { types = &sym break } } if types == nil { t.Fatal("couldn't find runtime.types in symbols") } d, err := f.DWARF() if err != nil { t.Fatalf("error reading DWARF: %v", err) } rdr := d.Reader() ex := examiner{} if err := ex.populate(rdr); err != nil { t.Fatalf("error reading DWARF: %v", err) } dies := ex.Named("*main.X") if len(dies) != 1 { t.Fatalf("wanted 1 DIE named *main.X, found %v", len(dies)) } rtAttr := dies[0].Val(intdwarf.DW_AT_go_runtime_type) if rtAttr == nil { t.Fatalf("*main.X DIE had no runtime type attr. DIE: %v", dies[0]) } if runtime.GOOS == "darwin" && runtime.GOARCH == "arm64" { return // everything is PIE on ARM64, addresses are relocated } if rtAttr.(uint64)+types.Addr != addr { t.Errorf("DWARF type offset was %#x+%#x, but test program said %#x", rtAttr.(uint64), types.Addr, addr) } } func TestIssue27614(t *testing.T) { // Type references in debug_info should always use the DW_TAG_typedef_type // for the type, when that's generated. testenv.MustHaveGoBuild(t) if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } t.Parallel() dir := t.TempDir() const prog = `package main import "fmt" type astruct struct { X int } type bstruct struct { X float32 } var globalptr *astruct var globalvar astruct var bvar0, bvar1, bvar2 bstruct func main() { fmt.Println(globalptr, globalvar, bvar0, bvar1, bvar2) } ` f := gobuild(t, dir, prog, NoOpt) defer f.Close() data, err := f.DWARF() if err != nil { t.Fatal(err) } rdr := data.Reader() var astructTypeDIE, bstructTypeDIE, ptrastructTypeDIE *dwarf.Entry var globalptrDIE, globalvarDIE *dwarf.Entry var bvarDIE [3]*dwarf.Entry for { e, err := rdr.Next() if err != nil { t.Fatal(err) } if e == nil { break } name, _ := e.Val(dwarf.AttrName).(string) switch e.Tag { case dwarf.TagTypedef: switch name { case "main.astruct": astructTypeDIE = e case "main.bstruct": bstructTypeDIE = e } case dwarf.TagPointerType: if name == "*main.astruct" { ptrastructTypeDIE = e } case dwarf.TagVariable: switch name { case "main.globalptr": globalptrDIE = e case "main.globalvar": globalvarDIE = e default: const bvarprefix = "main.bvar" if strings.HasPrefix(name, bvarprefix) { i, _ := strconv.Atoi(name[len(bvarprefix):]) bvarDIE[i] = e } } } } typedieof := func(e *dwarf.Entry) dwarf.Offset { return e.Val(dwarf.AttrType).(dwarf.Offset) } if off := typedieof(ptrastructTypeDIE); off != astructTypeDIE.Offset { t.Errorf("type attribute of *main.astruct references %#x, not main.astruct DIE at %#x\n", off, astructTypeDIE.Offset) } if off := typedieof(globalptrDIE); off != ptrastructTypeDIE.Offset { t.Errorf("type attribute of main.globalptr references %#x, not *main.astruct DIE at %#x\n", off, ptrastructTypeDIE.Offset) } if off := typedieof(globalvarDIE); off != astructTypeDIE.Offset { t.Errorf("type attribute of main.globalvar1 references %#x, not main.astruct DIE at %#x\n", off, astructTypeDIE.Offset) } for i := range bvarDIE { if off := typedieof(bvarDIE[i]); off != bstructTypeDIE.Offset { t.Errorf("type attribute of main.bvar%d references %#x, not main.bstruct DIE at %#x\n", i, off, bstructTypeDIE.Offset) } } } func TestStaticTmp(t *testing.T) { // Checks that statictmp variables do not appear in debug_info or the // symbol table. // Also checks that statictmp variables do not collide with user defined // variables (issue #25113) testenv.MustHaveGoBuild(t) if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } t.Parallel() dir := t.TempDir() const prog = `package main var stmp_0 string var a []int func init() { a = []int{ 7 } } func main() { println(a[0]) } ` f := gobuild(t, dir, prog, NoOpt) defer f.Close() d, err := f.DWARF() if err != nil { t.Fatalf("error reading DWARF: %v", err) } rdr := d.Reader() for { e, err := rdr.Next() if err != nil { t.Fatal(err) } if e == nil { break } if e.Tag != dwarf.TagVariable { continue } name, ok := e.Val(dwarf.AttrName).(string) if !ok { continue } if strings.Contains(name, "stmp") { t.Errorf("statictmp variable found in debug_info: %s at %x", name, e.Offset) } } // When external linking, we put all symbols in the symbol table (so the // external linker can find them). Skip the symbol table check. // TODO: maybe there is some way to tell the external linker not to put // those symbols in the executable's symbol table? Prefix the symbol name // with "." or "L" to pretend it is a label? if !testenv.CanInternalLink() { return } syms, err := f.Symbols() if err != nil { t.Fatalf("error reading symbols: %v", err) } for _, sym := range syms { if strings.Contains(sym.Name, "stmp") { t.Errorf("statictmp variable found in symbol table: %s", sym.Name) } } } func TestPackageNameAttr(t *testing.T) { const dwarfAttrGoPackageName = dwarf.Attr(0x2905) const dwarfGoLanguage = 22 testenv.MustHaveGoBuild(t) if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } t.Parallel() dir := t.TempDir() const prog = "package main\nfunc main() {\nprintln(\"hello world\")\n}\n" f := gobuild(t, dir, prog, NoOpt) defer f.Close() d, err := f.DWARF() if err != nil { t.Fatalf("error reading DWARF: %v", err) } rdr := d.Reader() runtimeUnitSeen := false for { e, err := rdr.Next() if err != nil { t.Fatal(err) } if e == nil { break } if e.Tag != dwarf.TagCompileUnit { continue } if lang, _ := e.Val(dwarf.AttrLanguage).(int64); lang != dwarfGoLanguage { continue } pn, ok := e.Val(dwarfAttrGoPackageName).(string) if !ok { name, _ := e.Val(dwarf.AttrName).(string) t.Errorf("found compile unit without package name: %s", name) } if pn == "" { name, _ := e.Val(dwarf.AttrName).(string) t.Errorf("found compile unit with empty package name: %s", name) } else { if pn == "runtime" { runtimeUnitSeen = true } } } // Something is wrong if there's no runtime compilation unit. if !runtimeUnitSeen { t.Errorf("no package name for runtime unit") } } func TestMachoIssue32233(t *testing.T) { testenv.MustHaveGoBuild(t) testenv.MustHaveCGO(t) if runtime.GOOS != "darwin" { t.Skip("skipping; test only interesting on darwin") } tmpdir := t.TempDir() wd, err := os.Getwd() if err != nil { t.Fatalf("where am I? %v", err) } pdir := filepath.Join(wd, "testdata", "issue32233", "main") f := gobuildTestdata(t, tmpdir, pdir, DefaultOpt) f.Close() } func TestWindowsIssue36495(t *testing.T) { testenv.MustHaveGoBuild(t) if runtime.GOOS != "windows" { t.Skip("skipping: test only on windows") } dir := t.TempDir() prog := ` package main import "fmt" func main() { fmt.Println("Hello World") }` f := gobuild(t, dir, prog, NoOpt) defer f.Close() exe, err := pe.Open(f.path) if err != nil { t.Fatalf("error opening pe file: %v", err) } defer exe.Close() dw, err := exe.DWARF() if err != nil { t.Fatalf("error parsing DWARF: %v", err) } rdr := dw.Reader() for { e, err := rdr.Next() if err != nil { t.Fatalf("error reading DWARF: %v", err) } if e == nil { break } if e.Tag != dwarf.TagCompileUnit { continue } lnrdr, err := dw.LineReader(e) if err != nil { t.Fatalf("error creating DWARF line reader: %v", err) } if lnrdr != nil { var lne dwarf.LineEntry for { err := lnrdr.Next(&lne) if err == io.EOF { break } if err != nil { t.Fatalf("error reading next DWARF line: %v", err) } if strings.Contains(lne.File.Name, `\`) { t.Errorf("filename should not contain backslash: %v", lne.File.Name) } } } rdr.SkipChildren() } } func TestIssue38192(t *testing.T) { testenv.MustHaveGoBuild(t) if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } t.Parallel() // Build a test program that contains a translation unit whose // text (from am assembly source) contains only a single instruction. tmpdir := t.TempDir() wd, err := os.Getwd() if err != nil { t.Fatalf("where am I? %v", err) } pdir := filepath.Join(wd, "testdata", "issue38192") f := gobuildTestdata(t, tmpdir, pdir, DefaultOpt) defer f.Close() // Open the resulting binary and examine the DWARF it contains. // Look for the function of interest ("main.singleInstruction") // and verify that the line table has an entry not just for the // single instruction but also a dummy instruction following it, // so as to test that whoever is emitting the DWARF doesn't // emit an end-sequence op immediately after the last instruction // in the translation unit. // // NB: another way to write this test would have been to run the // resulting executable under GDB, set a breakpoint in // "main.singleInstruction", then verify that GDB displays the // correct line/file information. Given the headache and flakiness // associated with GDB-based tests these days, a direct read of // the line table seems more desirable. rows := []dwarf.LineEntry{} dw, err := f.DWARF() if err != nil { t.Fatalf("error parsing DWARF: %v", err) } rdr := dw.Reader() for { e, err := rdr.Next() if err != nil { t.Fatalf("error reading DWARF: %v", err) } if e == nil { break } if e.Tag != dwarf.TagCompileUnit { continue } // NB: there can be multiple compile units named "main". name := e.Val(dwarf.AttrName).(string) if name != "main" { continue } lnrdr, err := dw.LineReader(e) if err != nil { t.Fatalf("error creating DWARF line reader: %v", err) } if lnrdr != nil { var lne dwarf.LineEntry for { err := lnrdr.Next(&lne) if err == io.EOF { break } if err != nil { t.Fatalf("error reading next DWARF line: %v", err) } if !strings.HasSuffix(lne.File.Name, "ld/testdata/issue38192/oneline.s") { continue } rows = append(rows, lne) } } rdr.SkipChildren() } f.Close() // Make sure that: // - main.singleInstruction appears in the line table // - more than one PC value appears the line table for // that compilation unit. // - at least one row has the correct line number (8) pcs := make(map[uint64]bool) line8seen := false for _, r := range rows { pcs[r.Address] = true if r.Line == 8 { line8seen = true } } failed := false if len(pcs) < 2 { failed = true t.Errorf("not enough line table rows for main.singleInstruction (got %d, wanted > 1", len(pcs)) } if !line8seen { failed = true t.Errorf("line table does not contain correct line for main.singleInstruction") } if !failed { return } for i, r := range rows { t.Logf("row %d: A=%x F=%s L=%d\n", i, r.Address, r.File.Name, r.Line) } } func TestIssue39757(t *testing.T) { testenv.MustHaveGoBuild(t) if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } t.Parallel() // In this bug the DWARF line table contents for the last couple of // instructions in a function were incorrect (bad file/line). This // test verifies that all of the line table rows for a function // of interest have the same file (no "autogenerated"). // // Note: the function in this test was written with an eye towards // ensuring that there are no inlined routines from other packages // (which could introduce other source files into the DWARF); it's // possible that at some point things could evolve in the // compiler/runtime in ways that aren't happening now, so this // might be something to check for if it does start failing. tmpdir := t.TempDir() wd, err := os.Getwd() if err != nil { t.Fatalf("where am I? %v", err) } pdir := filepath.Join(wd, "testdata", "issue39757") f := gobuildTestdata(t, tmpdir, pdir, DefaultOpt) defer f.Close() syms, err := f.Symbols() if err != nil { t.Fatal(err) } var addr uint64 for _, sym := range syms { if sym.Name == "main.main" { addr = sym.Addr break } } if addr == 0 { t.Fatal("cannot find main.main in symbols") } // Open the resulting binary and examine the DWARF it contains. // Look for the function of interest ("main.main") // and verify that all line table entries show the same source // file. dw, err := f.DWARF() if err != nil { t.Fatalf("error parsing DWARF: %v", err) } rdr := dw.Reader() ex := examiner{} if err := ex.populate(rdr); err != nil { t.Fatalf("error reading DWARF: %v", err) } // Locate the main.main DIE mains := ex.Named("main.main") if len(mains) == 0 { t.Fatalf("unable to locate DIE for main.main") } if len(mains) != 1 { t.Fatalf("more than one main.main DIE") } maindie := mains[0] // Collect the start/end PC for main.main lowpc := maindie.Val(dwarf.AttrLowpc).(uint64) highpc := maindie.Val(dwarf.AttrHighpc).(uint64) // Now read the line table for the 'main' compilation unit. mainIdx := ex.idxFromOffset(maindie.Offset) cuentry := ex.Parent(mainIdx) if cuentry == nil { t.Fatalf("main.main DIE appears orphaned") } lnrdr, lerr := dw.LineReader(cuentry) if lerr != nil { t.Fatalf("error creating DWARF line reader: %v", err) } if lnrdr == nil { t.Fatalf("no line table for main.main compilation unit") } rows := []dwarf.LineEntry{} mainrows := 0 var lne dwarf.LineEntry for { err := lnrdr.Next(&lne) if err == io.EOF { break } rows = append(rows, lne) if err != nil { t.Fatalf("error reading next DWARF line: %v", err) } if lne.Address < lowpc || lne.Address > highpc { continue } if !strings.HasSuffix(lne.File.Name, "issue39757main.go") { t.Errorf("found row with file=%s (not issue39757main.go)", lne.File.Name) } mainrows++ } f.Close() // Make sure we saw a few rows. if mainrows < 3 { t.Errorf("not enough line table rows for main.main (got %d, wanted > 3", mainrows) for i, r := range rows { t.Logf("row %d: A=%x F=%s L=%d\n", i, r.Address, r.File.Name, r.Line) } } } func TestIssue42484(t *testing.T) { testenv.MustHaveGoBuild(t) if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } t.Parallel() tmpdir, err := ioutil.TempDir("", "TestIssue42484") if err != nil { t.Fatalf("could not create directory: %v", err) } defer os.RemoveAll(tmpdir) wd, err := os.Getwd() if err != nil { t.Fatalf("where am I? %v", err) } pdir := filepath.Join(wd, "testdata", "issue42484") f := gobuildTestdata(t, tmpdir, pdir, NoOpt) var lastAddr uint64 var lastFile string var lastLine int dw, err := f.DWARF() if err != nil { t.Fatalf("error parsing DWARF: %v", err) } rdr := dw.Reader() for { e, err := rdr.Next() if err != nil { t.Fatalf("error reading DWARF: %v", err) } if e == nil { break } if e.Tag != dwarf.TagCompileUnit { continue } lnrdr, err := dw.LineReader(e) if err != nil { t.Fatalf("error creating DWARF line reader: %v", err) } if lnrdr != nil { var lne dwarf.LineEntry for { err := lnrdr.Next(&lne) if err == io.EOF { break } if err != nil { t.Fatalf("error reading next DWARF line: %v", err) } if lne.EndSequence { continue } if lne.Address == lastAddr && (lne.File.Name != lastFile || lne.Line != lastLine) { t.Errorf("address %#x is assigned to both %s:%d and %s:%d", lastAddr, lastFile, lastLine, lne.File.Name, lne.Line) } lastAddr = lne.Address lastFile = lne.File.Name lastLine = lne.Line } } rdr.SkipChildren() } f.Close() } func TestOutputParamAbbrevAndAttr(t *testing.T) { testenv.MustHaveGoBuild(t) if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; no DWARF symbol table in executables") } t.Parallel() // This test verifies that the compiler is selecting the correct // DWARF abbreviation for output parameters, and that the // variable parameter attribute is correct for in-params and // out-params. const prog = ` package main //go:noinline func ABC(c1, c2, c3 int, d1, d2, d3, d4 string, f1, f2, f3 float32, g1 [1024]int) (r1 int, r2 int, r3 [1024]int, r4 byte, r5 string, r6 float32) { g1[0] = 6 r1, r2, r3, r4, r5, r6 = c3, c2+c1, g1, 'a', d1+d2+d3+d4, f1+f2+f3 return } func main() { a := [1024]int{} v1, v2, v3, v4, v5, v6 := ABC(1, 2, 3, "a", "b", "c", "d", 1.0, 2.0, 1.0, a) println(v1, v2, v3[0], v4, v5, v6) } ` dir := t.TempDir() f := gobuild(t, dir, prog, NoOpt) defer f.Close() d, err := f.DWARF() if err != nil { t.Fatalf("error reading DWARF: %v", err) } rdr := d.Reader() ex := examiner{} if err := ex.populate(rdr); err != nil { t.Fatalf("error reading DWARF: %v", err) } // Locate the main.ABC DIE abcs := ex.Named("main.ABC") if len(abcs) == 0 { t.Fatalf("unable to locate DIE for main.ABC") } if len(abcs) != 1 { t.Fatalf("more than one main.ABC DIE") } abcdie := abcs[0] // Vet the DIE if abcdie.Tag != dwarf.TagSubprogram { t.Fatalf("unexpected tag %v on main.ABC DIE", abcdie.Tag) } // A setting of DW_AT_variable_parameter indicates that the // param in question is an output parameter; we want to see this // attribute set to TRUE for all Go return params. It would be // OK to have it missing for input parameters, but for the moment // we verify that the attr is present but set to false. // Values in this map are of the form : // where order is the order within the child DIE list of the param, // and is an integer: // // -1: varparm attr not found // 1: varparm found with value false // 2: varparm found with value true // foundParams := make(map[string]string) // Walk ABCs's children looking for params. abcIdx := ex.idxFromOffset(abcdie.Offset) childDies := ex.Children(abcIdx) idx := 0 for _, child := range childDies { if child.Tag == dwarf.TagFormalParameter { st := -1 if vp, ok := child.Val(dwarf.AttrVarParam).(bool); ok { if vp { st = 2 } else { st = 1 } } if name, ok := child.Val(dwarf.AttrName).(string); ok { foundParams[name] = fmt.Sprintf("%d:%d", idx, st) idx++ } } } // Digest the result. found := make([]string, 0, len(foundParams)) for k, v := range foundParams { found = append(found, fmt.Sprintf("%s:%s", k, v)) } sort.Strings(found) // Make sure we see all of the expected params in the proper // order, that they have the varparam attr, and the varparm is set // for the returns. expected := "[c1:0:1 c2:1:1 c3:2:1 d1:3:1 d2:4:1 d3:5:1 d4:6:1 f1:7:1 f2:8:1 f3:9:1 g1:10:1 r1:11:2 r2:12:2 r3:13:2 r4:14:2 r5:15:2 r6:16:2]" if fmt.Sprintf("%+v", found) != expected { t.Errorf("param check failed, wanted %s got %s\n", expected, found) } }