// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package base32 implements base32 encoding as specified by RFC 4648. package base32 import ( "io" "strconv" ) /* * Encodings */ // An Encoding is a radix 32 encoding/decoding scheme, defined by a // 32-character alphabet. The most common is the "base32" encoding // introduced for SASL GSSAPI and standardized in RFC 4648. // The alternate "base32hex" encoding is used in DNSSEC. type Encoding struct { encode [32]byte decodeMap [256]byte padChar rune } const ( StdPadding rune = '=' // Standard padding character NoPadding rune = -1 // No padding ) const encodeStd = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567" const encodeHex = "0123456789ABCDEFGHIJKLMNOPQRSTUV" // NewEncoding returns a new Encoding defined by the given alphabet, // which must be a 32-byte string. func NewEncoding(encoder string) *Encoding { if len(encoder) != 32 { panic("encoding alphabet is not 32-bytes long") } e := new(Encoding) copy(e.encode[:], encoder) e.padChar = StdPadding for i := 0; i < len(e.decodeMap); i++ { e.decodeMap[i] = 0xFF } for i := 0; i < len(encoder); i++ { e.decodeMap[encoder[i]] = byte(i) } return e } // StdEncoding is the standard base32 encoding, as defined in // RFC 4648. var StdEncoding = NewEncoding(encodeStd) // HexEncoding is the ``Extended Hex Alphabet'' defined in RFC 4648. // It is typically used in DNS. var HexEncoding = NewEncoding(encodeHex) // WithPadding creates a new encoding identical to enc except // with a specified padding character, or NoPadding to disable padding. // The padding character must not be '\r' or '\n', must not // be contained in the encoding's alphabet and must be a rune equal or // below '\xff'. func (enc Encoding) WithPadding(padding rune) *Encoding { if padding == '\r' || padding == '\n' || padding > 0xff { panic("invalid padding") } for i := 0; i < len(enc.encode); i++ { if rune(enc.encode[i]) == padding { panic("padding contained in alphabet") } } enc.padChar = padding return &enc } /* * Encoder */ // Encode encodes src using the encoding enc, writing // EncodedLen(len(src)) bytes to dst. // // The encoding pads the output to a multiple of 8 bytes, // so Encode is not appropriate for use on individual blocks // of a large data stream. Use NewEncoder() instead. func (enc *Encoding) Encode(dst, src []byte) { for len(src) > 0 { var b [8]byte // Unpack 8x 5-bit source blocks into a 5 byte // destination quantum switch len(src) { default: b[7] = src[4] & 0x1F b[6] = src[4] >> 5 fallthrough case 4: b[6] |= (src[3] << 3) & 0x1F b[5] = (src[3] >> 2) & 0x1F b[4] = src[3] >> 7 fallthrough case 3: b[4] |= (src[2] << 1) & 0x1F b[3] = (src[2] >> 4) & 0x1F fallthrough case 2: b[3] |= (src[1] << 4) & 0x1F b[2] = (src[1] >> 1) & 0x1F b[1] = (src[1] >> 6) & 0x1F fallthrough case 1: b[1] |= (src[0] << 2) & 0x1F b[0] = src[0] >> 3 } // Encode 5-bit blocks using the base32 alphabet size := len(dst) if size >= 8 { // Common case, unrolled for extra performance dst[0] = enc.encode[b[0]&31] dst[1] = enc.encode[b[1]&31] dst[2] = enc.encode[b[2]&31] dst[3] = enc.encode[b[3]&31] dst[4] = enc.encode[b[4]&31] dst[5] = enc.encode[b[5]&31] dst[6] = enc.encode[b[6]&31] dst[7] = enc.encode[b[7]&31] } else { for i := 0; i < size; i++ { dst[i] = enc.encode[b[i]&31] } } // Pad the final quantum if len(src) < 5 { if enc.padChar == NoPadding { break } dst[7] = byte(enc.padChar) if len(src) < 4 { dst[6] = byte(enc.padChar) dst[5] = byte(enc.padChar) if len(src) < 3 { dst[4] = byte(enc.padChar) if len(src) < 2 { dst[3] = byte(enc.padChar) dst[2] = byte(enc.padChar) } } } break } src = src[5:] dst = dst[8:] } } // EncodeToString returns the base32 encoding of src. func (enc *Encoding) EncodeToString(src []byte) string { buf := make([]byte, enc.EncodedLen(len(src))) enc.Encode(buf, src) return string(buf) } type encoder struct { err error enc *Encoding w io.Writer buf [5]byte // buffered data waiting to be encoded nbuf int // number of bytes in buf out [1024]byte // output buffer } func (e *encoder) Write(p []byte) (n int, err error) { if e.err != nil { return 0, e.err } // Leading fringe. if e.nbuf > 0 { var i int for i = 0; i < len(p) && e.nbuf < 5; i++ { e.buf[e.nbuf] = p[i] e.nbuf++ } n += i p = p[i:] if e.nbuf < 5 { return } e.enc.Encode(e.out[0:], e.buf[0:]) if _, e.err = e.w.Write(e.out[0:8]); e.err != nil { return n, e.err } e.nbuf = 0 } // Large interior chunks. for len(p) >= 5 { nn := len(e.out) / 8 * 5 if nn > len(p) { nn = len(p) nn -= nn % 5 } e.enc.Encode(e.out[0:], p[0:nn]) if _, e.err = e.w.Write(e.out[0 : nn/5*8]); e.err != nil { return n, e.err } n += nn p = p[nn:] } // Trailing fringe. for i := 0; i < len(p); i++ { e.buf[i] = p[i] } e.nbuf = len(p) n += len(p) return } // Close flushes any pending output from the encoder. // It is an error to call Write after calling Close. func (e *encoder) Close() error { // If there's anything left in the buffer, flush it out if e.err == nil && e.nbuf > 0 { e.enc.Encode(e.out[0:], e.buf[0:e.nbuf]) encodedLen := e.enc.EncodedLen(e.nbuf) e.nbuf = 0 _, e.err = e.w.Write(e.out[0:encodedLen]) } return e.err } // NewEncoder returns a new base32 stream encoder. Data written to // the returned writer will be encoded using enc and then written to w. // Base32 encodings operate in 5-byte blocks; when finished // writing, the caller must Close the returned encoder to flush any // partially written blocks. func NewEncoder(enc *Encoding, w io.Writer) io.WriteCloser { return &encoder{enc: enc, w: w} } // EncodedLen returns the length in bytes of the base32 encoding // of an input buffer of length n. func (enc *Encoding) EncodedLen(n int) int { if enc.padChar == NoPadding { return (n*8 + 4) / 5 } return (n + 4) / 5 * 8 } /* * Decoder */ type CorruptInputError int64 func (e CorruptInputError) Error() string { return "illegal base32 data at input byte " + strconv.FormatInt(int64(e), 10) } // decode is like Decode but returns an additional 'end' value, which // indicates if end-of-message padding was encountered and thus any // additional data is an error. This method assumes that src has been // stripped of all supported whitespace ('\r' and '\n'). func (enc *Encoding) decode(dst, src []byte) (n int, end bool, err error) { // Lift the nil check outside of the loop. _ = enc.decodeMap dsti := 0 olen := len(src) for len(src) > 0 && !end { // Decode quantum using the base32 alphabet var dbuf [8]byte dlen := 8 for j := 0; j < 8; { if len(src) == 0 { if enc.padChar != NoPadding { // We have reached the end and are missing padding return n, false, CorruptInputError(olen - len(src) - j) } // We have reached the end and are not expecting any padding dlen, end = j, true break } in := src[0] src = src[1:] if in == byte(enc.padChar) && j >= 2 && len(src) < 8 { // We've reached the end and there's padding if len(src)+j < 8-1 { // not enough padding return n, false, CorruptInputError(olen) } for k := 0; k < 8-1-j; k++ { if len(src) > k && src[k] != byte(enc.padChar) { // incorrect padding return n, false, CorruptInputError(olen - len(src) + k - 1) } } dlen, end = j, true // 7, 5 and 2 are not valid padding lengths, and so 1, 3 and 6 are not // valid dlen values. See RFC 4648 Section 6 "Base 32 Encoding" listing // the five valid padding lengths, and Section 9 "Illustrations and // Examples" for an illustration for how the 1st, 3rd and 6th base32 // src bytes do not yield enough information to decode a dst byte. if dlen == 1 || dlen == 3 || dlen == 6 { return n, false, CorruptInputError(olen - len(src) - 1) } break } dbuf[j] = enc.decodeMap[in] if dbuf[j] == 0xFF { return n, false, CorruptInputError(olen - len(src) - 1) } j++ } // Pack 8x 5-bit source blocks into 5 byte destination // quantum switch dlen { case 8: dst[dsti+4] = dbuf[6]<<5 | dbuf[7] n++ fallthrough case 7: dst[dsti+3] = dbuf[4]<<7 | dbuf[5]<<2 | dbuf[6]>>3 n++ fallthrough case 5: dst[dsti+2] = dbuf[3]<<4 | dbuf[4]>>1 n++ fallthrough case 4: dst[dsti+1] = dbuf[1]<<6 | dbuf[2]<<1 | dbuf[3]>>4 n++ fallthrough case 2: dst[dsti+0] = dbuf[0]<<3 | dbuf[1]>>2 n++ } dsti += 5 } return n, end, nil } // Decode decodes src using the encoding enc. It writes at most // DecodedLen(len(src)) bytes to dst and returns the number of bytes // written. If src contains invalid base32 data, it will return the // number of bytes successfully written and CorruptInputError. // New line characters (\r and \n) are ignored. func (enc *Encoding) Decode(dst, src []byte) (n int, err error) { buf := make([]byte, len(src)) l := stripNewlines(buf, src) n, _, err = enc.decode(dst, buf[:l]) return } // DecodeString returns the bytes represented by the base32 string s. func (enc *Encoding) DecodeString(s string) ([]byte, error) { buf := []byte(s) l := stripNewlines(buf, buf) n, _, err := enc.decode(buf, buf[:l]) return buf[:n], err } type decoder struct { err error enc *Encoding r io.Reader end bool // saw end of message buf [1024]byte // leftover input nbuf int out []byte // leftover decoded output outbuf [1024 / 8 * 5]byte } func readEncodedData(r io.Reader, buf []byte, min int, expectsPadding bool) (n int, err error) { for n < min && err == nil { var nn int nn, err = r.Read(buf[n:]) n += nn } // data was read, less than min bytes could be read if n < min && n > 0 && err == io.EOF { err = io.ErrUnexpectedEOF } // no data was read, the buffer already contains some data // when padding is disabled this is not an error, as the message can be of // any length if expectsPadding && min < 8 && n == 0 && err == io.EOF { err = io.ErrUnexpectedEOF } return } func (d *decoder) Read(p []byte) (n int, err error) { // Use leftover decoded output from last read. if len(d.out) > 0 { n = copy(p, d.out) d.out = d.out[n:] if len(d.out) == 0 { return n, d.err } return n, nil } if d.err != nil { return 0, d.err } // Read a chunk. nn := len(p) / 5 * 8 if nn < 8 { nn = 8 } if nn > len(d.buf) { nn = len(d.buf) } // Minimum amount of bytes that needs to be read each cycle var min int var expectsPadding bool if d.enc.padChar == NoPadding { min = 1 expectsPadding = false } else { min = 8 - d.nbuf expectsPadding = true } nn, d.err = readEncodedData(d.r, d.buf[d.nbuf:nn], min, expectsPadding) d.nbuf += nn if d.nbuf < min { return 0, d.err } // Decode chunk into p, or d.out and then p if p is too small. var nr int if d.enc.padChar == NoPadding { nr = d.nbuf } else { nr = d.nbuf / 8 * 8 } nw := d.enc.DecodedLen(d.nbuf) if nw > len(p) { nw, d.end, err = d.enc.decode(d.outbuf[0:], d.buf[0:nr]) d.out = d.outbuf[0:nw] n = copy(p, d.out) d.out = d.out[n:] } else { n, d.end, err = d.enc.decode(p, d.buf[0:nr]) } d.nbuf -= nr for i := 0; i < d.nbuf; i++ { d.buf[i] = d.buf[i+nr] } if err != nil && (d.err == nil || d.err == io.EOF) { d.err = err } if len(d.out) > 0 { // We cannot return all the decoded bytes to the caller in this // invocation of Read, so we return a nil error to ensure that Read // will be called again. The error stored in d.err, if any, will be // returned with the last set of decoded bytes. return n, nil } return n, d.err } type newlineFilteringReader struct { wrapped io.Reader } // stripNewlines removes newline characters and returns the number // of non-newline characters copied to dst. func stripNewlines(dst, src []byte) int { offset := 0 for _, b := range src { if b == '\r' || b == '\n' { continue } dst[offset] = b offset++ } return offset } func (r *newlineFilteringReader) Read(p []byte) (int, error) { n, err := r.wrapped.Read(p) for n > 0 { s := p[0:n] offset := stripNewlines(s, s) if err != nil || offset > 0 { return offset, err } // Previous buffer entirely whitespace, read again n, err = r.wrapped.Read(p) } return n, err } // NewDecoder constructs a new base32 stream decoder. func NewDecoder(enc *Encoding, r io.Reader) io.Reader { return &decoder{enc: enc, r: &newlineFilteringReader{r}} } // DecodedLen returns the maximum length in bytes of the decoded data // corresponding to n bytes of base32-encoded data. func (enc *Encoding) DecodedLen(n int) int { if enc.padChar == NoPadding { return n * 5 / 8 } return n / 8 * 5 }