// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package types import ( "fmt" "go/ast" "go/constant" "go/internal/typeparams" "go/token" ) func (check *Checker) reportAltDecl(obj Object) { if pos := obj.Pos(); pos.IsValid() { // We use "other" rather than "previous" here because // the first declaration seen may not be textually // earlier in the source. check.errorf(obj, _DuplicateDecl, "\tother declaration of %s", obj.Name()) // secondary error, \t indented } } func (check *Checker) declare(scope *Scope, id *ast.Ident, obj Object, pos token.Pos) { // spec: "The blank identifier, represented by the underscore // character _, may be used in a declaration like any other // identifier but the declaration does not introduce a new // binding." if obj.Name() != "_" { if alt := scope.Insert(obj); alt != nil { check.errorf(obj, _DuplicateDecl, "%s redeclared in this block", obj.Name()) check.reportAltDecl(alt) return } obj.setScopePos(pos) } if id != nil { check.recordDef(id, obj) } } // pathString returns a string of the form a->b-> ... ->g for a path [a, b, ... g]. func pathString(path []Object) string { var s string for i, p := range path { if i > 0 { s += "->" } s += p.Name() } return s } // objDecl type-checks the declaration of obj in its respective (file) context. // For the meaning of def, see Checker.definedType, in typexpr.go. func (check *Checker) objDecl(obj Object, def *Named) { if trace && obj.Type() == nil { if check.indent == 0 { fmt.Println() // empty line between top-level objects for readability } check.trace(obj.Pos(), "-- checking %s (%s, objPath = %s)", obj, obj.color(), pathString(check.objPath)) check.indent++ defer func() { check.indent-- check.trace(obj.Pos(), "=> %s (%s)", obj, obj.color()) }() } // Checking the declaration of obj means inferring its type // (and possibly its value, for constants). // An object's type (and thus the object) may be in one of // three states which are expressed by colors: // // - an object whose type is not yet known is painted white (initial color) // - an object whose type is in the process of being inferred is painted grey // - an object whose type is fully inferred is painted black // // During type inference, an object's color changes from white to grey // to black (pre-declared objects are painted black from the start). // A black object (i.e., its type) can only depend on (refer to) other black // ones. White and grey objects may depend on white and black objects. // A dependency on a grey object indicates a cycle which may or may not be // valid. // // When objects turn grey, they are pushed on the object path (a stack); // they are popped again when they turn black. Thus, if a grey object (a // cycle) is encountered, it is on the object path, and all the objects // it depends on are the remaining objects on that path. Color encoding // is such that the color value of a grey object indicates the index of // that object in the object path. // During type-checking, white objects may be assigned a type without // traversing through objDecl; e.g., when initializing constants and // variables. Update the colors of those objects here (rather than // everywhere where we set the type) to satisfy the color invariants. if obj.color() == white && obj.Type() != nil { obj.setColor(black) return } switch obj.color() { case white: assert(obj.Type() == nil) // All color values other than white and black are considered grey. // Because black and white are < grey, all values >= grey are grey. // Use those values to encode the object's index into the object path. obj.setColor(grey + color(check.push(obj))) defer func() { check.pop().setColor(black) }() case black: assert(obj.Type() != nil) return default: // Color values other than white or black are considered grey. fallthrough case grey: // We have a cycle. // In the existing code, this is marked by a non-nil type // for the object except for constants and variables whose // type may be non-nil (known), or nil if it depends on the // not-yet known initialization value. // In the former case, set the type to Typ[Invalid] because // we have an initialization cycle. The cycle error will be // reported later, when determining initialization order. // TODO(gri) Report cycle here and simplify initialization // order code. switch obj := obj.(type) { case *Const: if check.cycle(obj) || obj.typ == nil { obj.typ = Typ[Invalid] } case *Var: if check.cycle(obj) || obj.typ == nil { obj.typ = Typ[Invalid] } case *TypeName: if check.cycle(obj) { // break cycle // (without this, calling underlying() // below may lead to an endless loop // if we have a cycle for a defined // (*Named) type) obj.typ = Typ[Invalid] } case *Func: if check.cycle(obj) { // Don't set obj.typ to Typ[Invalid] here // because plenty of code type-asserts that // functions have a *Signature type. Grey // functions have their type set to an empty // signature which makes it impossible to // initialize a variable with the function. } default: unreachable() } assert(obj.Type() != nil) return } d := check.objMap[obj] if d == nil { check.dump("%v: %s should have been declared", obj.Pos(), obj) unreachable() } // save/restore current context and setup object context defer func(ctxt context) { check.context = ctxt }(check.context) check.context = context{ scope: d.file, } // Const and var declarations must not have initialization // cycles. We track them by remembering the current declaration // in check.decl. Initialization expressions depending on other // consts, vars, or functions, add dependencies to the current // check.decl. switch obj := obj.(type) { case *Const: check.decl = d // new package-level const decl check.constDecl(obj, d.vtyp, d.init, d.inherited) case *Var: check.decl = d // new package-level var decl check.varDecl(obj, d.lhs, d.vtyp, d.init) case *TypeName: // invalid recursive types are detected via path check.typeDecl(obj, d.tdecl, def) check.collectMethods(obj) // methods can only be added to top-level types case *Func: // functions may be recursive - no need to track dependencies check.funcDecl(obj, d) default: unreachable() } } // cycle checks if the cycle starting with obj is valid and // reports an error if it is not. func (check *Checker) cycle(obj Object) (isCycle bool) { // The object map contains the package scope objects and the non-interface methods. if debug { info := check.objMap[obj] inObjMap := info != nil && (info.fdecl == nil || info.fdecl.Recv == nil) // exclude methods isPkgObj := obj.Parent() == check.pkg.scope if isPkgObj != inObjMap { check.dump("%v: inconsistent object map for %s (isPkgObj = %v, inObjMap = %v)", obj.Pos(), obj, isPkgObj, inObjMap) unreachable() } } // Count cycle objects. assert(obj.color() >= grey) start := obj.color() - grey // index of obj in objPath cycle := check.objPath[start:] nval := 0 // number of (constant or variable) values in the cycle ndef := 0 // number of type definitions in the cycle for _, obj := range cycle { switch obj := obj.(type) { case *Const, *Var: nval++ case *TypeName: // Determine if the type name is an alias or not. For // package-level objects, use the object map which // provides syntactic information (which doesn't rely // on the order in which the objects are set up). For // local objects, we can rely on the order, so use // the object's predicate. // TODO(gri) It would be less fragile to always access // the syntactic information. We should consider storing // this information explicitly in the object. var alias bool if d := check.objMap[obj]; d != nil { alias = d.tdecl.Assign.IsValid() // package-level object } else { alias = obj.IsAlias() // function local object } if !alias { ndef++ } case *Func: // ignored for now default: unreachable() } } if trace { check.trace(obj.Pos(), "## cycle detected: objPath = %s->%s (len = %d)", pathString(cycle), obj.Name(), len(cycle)) check.trace(obj.Pos(), "## cycle contains: %d values, %d type definitions", nval, ndef) defer func() { if isCycle { check.trace(obj.Pos(), "=> error: cycle is invalid") } }() } // A cycle involving only constants and variables is invalid but we // ignore them here because they are reported via the initialization // cycle check. if nval == len(cycle) { return false } // A cycle involving only types (and possibly functions) must have at least // one type definition to be permitted: If there is no type definition, we // have a sequence of alias type names which will expand ad infinitum. if nval == 0 && ndef > 0 { return false // cycle is permitted } check.cycleError(cycle) return true } type typeInfo uint // validType verifies that the given type does not "expand" infinitely // producing a cycle in the type graph. Cycles are detected by marking // defined types. // (Cycles involving alias types, as in "type A = [10]A" are detected // earlier, via the objDecl cycle detection mechanism.) func (check *Checker) validType(typ Type, path []Object) typeInfo { const ( unknown typeInfo = iota marked valid invalid ) switch t := typ.(type) { case *Array: return check.validType(t.elem, path) case *Struct: for _, f := range t.fields { if check.validType(f.typ, path) == invalid { return invalid } } case *Interface: for _, etyp := range t.embeddeds { if check.validType(etyp, path) == invalid { return invalid } } case *Named: // don't touch the type if it is from a different package or the Universe scope // (doing so would lead to a race condition - was issue #35049) if t.obj.pkg != check.pkg { return valid } // don't report a 2nd error if we already know the type is invalid // (e.g., if a cycle was detected earlier, via under). if t.underlying == Typ[Invalid] { t.info = invalid return invalid } switch t.info { case unknown: t.info = marked t.info = check.validType(t.orig, append(path, t.obj)) // only types of current package added to path case marked: // cycle detected for i, tn := range path { if t.obj.pkg != check.pkg { panic("internal error: type cycle via package-external type") } if tn == t.obj { check.cycleError(path[i:]) t.info = invalid return t.info } } panic("internal error: cycle start not found") } return t.info case *instance: return check.validType(t.expand(), path) } return valid } // cycleError reports a declaration cycle starting with // the object in cycle that is "first" in the source. func (check *Checker) cycleError(cycle []Object) { // TODO(gri) Should we start with the last (rather than the first) object in the cycle // since that is the earliest point in the source where we start seeing the // cycle? That would be more consistent with other error messages. i := firstInSrc(cycle) obj := cycle[i] check.errorf(obj, _InvalidDeclCycle, "illegal cycle in declaration of %s", obj.Name()) for range cycle { check.errorf(obj, _InvalidDeclCycle, "\t%s refers to", obj.Name()) // secondary error, \t indented i++ if i >= len(cycle) { i = 0 } obj = cycle[i] } check.errorf(obj, _InvalidDeclCycle, "\t%s", obj.Name()) } // firstInSrc reports the index of the object with the "smallest" // source position in path. path must not be empty. func firstInSrc(path []Object) int { fst, pos := 0, path[0].Pos() for i, t := range path[1:] { if t.Pos() < pos { fst, pos = i+1, t.Pos() } } return fst } type ( decl interface { node() ast.Node } importDecl struct{ spec *ast.ImportSpec } constDecl struct { spec *ast.ValueSpec iota int typ ast.Expr init []ast.Expr inherited bool } varDecl struct{ spec *ast.ValueSpec } typeDecl struct{ spec *ast.TypeSpec } funcDecl struct{ decl *ast.FuncDecl } ) func (d importDecl) node() ast.Node { return d.spec } func (d constDecl) node() ast.Node { return d.spec } func (d varDecl) node() ast.Node { return d.spec } func (d typeDecl) node() ast.Node { return d.spec } func (d funcDecl) node() ast.Node { return d.decl } func (check *Checker) walkDecls(decls []ast.Decl, f func(decl)) { for _, d := range decls { check.walkDecl(d, f) } } func (check *Checker) walkDecl(d ast.Decl, f func(decl)) { switch d := d.(type) { case *ast.BadDecl: // ignore case *ast.GenDecl: var last *ast.ValueSpec // last ValueSpec with type or init exprs seen for iota, s := range d.Specs { switch s := s.(type) { case *ast.ImportSpec: f(importDecl{s}) case *ast.ValueSpec: switch d.Tok { case token.CONST: // determine which initialization expressions to use inherited := true switch { case s.Type != nil || len(s.Values) > 0: last = s inherited = false case last == nil: last = new(ast.ValueSpec) // make sure last exists inherited = false } check.arityMatch(s, last) f(constDecl{spec: s, iota: iota, typ: last.Type, init: last.Values, inherited: inherited}) case token.VAR: check.arityMatch(s, nil) f(varDecl{s}) default: check.invalidAST(s, "invalid token %s", d.Tok) } case *ast.TypeSpec: f(typeDecl{s}) default: check.invalidAST(s, "unknown ast.Spec node %T", s) } } case *ast.FuncDecl: f(funcDecl{d}) default: check.invalidAST(d, "unknown ast.Decl node %T", d) } } func (check *Checker) constDecl(obj *Const, typ, init ast.Expr, inherited bool) { assert(obj.typ == nil) // use the correct value of iota defer func(iota constant.Value, errpos positioner) { check.iota = iota check.errpos = errpos }(check.iota, check.errpos) check.iota = obj.val check.errpos = nil // provide valid constant value under all circumstances obj.val = constant.MakeUnknown() // determine type, if any if typ != nil { t := check.typ(typ) if !isConstType(t) { // don't report an error if the type is an invalid C (defined) type // (issue #22090) if under(t) != Typ[Invalid] { check.errorf(typ, _InvalidConstType, "invalid constant type %s", t) } obj.typ = Typ[Invalid] return } obj.typ = t } // check initialization var x operand if init != nil { if inherited { // The initialization expression is inherited from a previous // constant declaration, and (error) positions refer to that // expression and not the current constant declaration. Use // the constant identifier position for any errors during // init expression evaluation since that is all we have // (see issues #42991, #42992). check.errpos = atPos(obj.pos) } check.expr(&x, init) } check.initConst(obj, &x) } func (check *Checker) varDecl(obj *Var, lhs []*Var, typ, init ast.Expr) { assert(obj.typ == nil) // determine type, if any if typ != nil { obj.typ = check.varType(typ) // We cannot spread the type to all lhs variables if there // are more than one since that would mark them as checked // (see Checker.objDecl) and the assignment of init exprs, // if any, would not be checked. // // TODO(gri) If we have no init expr, we should distribute // a given type otherwise we need to re-evalate the type // expr for each lhs variable, leading to duplicate work. } // check initialization if init == nil { if typ == nil { // error reported before by arityMatch obj.typ = Typ[Invalid] } return } if lhs == nil || len(lhs) == 1 { assert(lhs == nil || lhs[0] == obj) var x operand check.expr(&x, init) check.initVar(obj, &x, "variable declaration") return } if debug { // obj must be one of lhs found := false for _, lhs := range lhs { if obj == lhs { found = true break } } if !found { panic("inconsistent lhs") } } // We have multiple variables on the lhs and one init expr. // Make sure all variables have been given the same type if // one was specified, otherwise they assume the type of the // init expression values (was issue #15755). if typ != nil { for _, lhs := range lhs { lhs.typ = obj.typ } } check.initVars(lhs, []ast.Expr{init}, token.NoPos) } // under returns the expanded underlying type of n0; possibly by following // forward chains of named types. If an underlying type is found, resolve // the chain by setting the underlying type for each defined type in the // chain before returning it. If no underlying type is found or a cycle // is detected, the result is Typ[Invalid]. If a cycle is detected and // n0.check != nil, the cycle is reported. func (n0 *Named) under() Type { u := n0.underlying if u == Typ[Invalid] { return u } // If the underlying type of a defined type is not a defined // (incl. instance) type, then that is the desired underlying // type. switch u.(type) { case nil: return Typ[Invalid] default: // common case return u case *Named, *instance: // handled below } if n0.check == nil { panic("internal error: Named.check == nil but type is incomplete") } // Invariant: after this point n0 as well as any named types in its // underlying chain should be set up when this function exits. check := n0.check // If we can't expand u at this point, it is invalid. n := asNamed(u) if n == nil { n0.underlying = Typ[Invalid] return n0.underlying } // Otherwise, follow the forward chain. seen := map[*Named]int{n0: 0} path := []Object{n0.obj} for { u = n.underlying if u == nil { u = Typ[Invalid] break } var n1 *Named switch u1 := u.(type) { case *Named: n1 = u1 case *instance: n1, _ = u1.expand().(*Named) if n1 == nil { u = Typ[Invalid] } } if n1 == nil { break // end of chain } seen[n] = len(seen) path = append(path, n.obj) n = n1 if i, ok := seen[n]; ok { // cycle check.cycleError(path[i:]) u = Typ[Invalid] break } } for n := range seen { // We should never have to update the underlying type of an imported type; // those underlying types should have been resolved during the import. // Also, doing so would lead to a race condition (was issue #31749). // Do this check always, not just in debug mode (it's cheap). if n.obj.pkg != check.pkg { panic("internal error: imported type with unresolved underlying type") } n.underlying = u } return u } func (n *Named) setUnderlying(typ Type) { if n != nil { n.underlying = typ } } func (check *Checker) typeDecl(obj *TypeName, tdecl *ast.TypeSpec, def *Named) { assert(obj.typ == nil) check.later(func() { check.validType(obj.typ, nil) }) alias := tdecl.Assign.IsValid() if alias && typeparams.Get(tdecl) != nil { // The parser will ensure this but we may still get an invalid AST. // Complain and continue as regular type definition. check.error(atPos(tdecl.Assign), 0, "generic type cannot be alias") alias = false } if alias { // type alias declaration if !check.allowVersion(check.pkg, 1, 9) { check.errorf(atPos(tdecl.Assign), _BadDecl, "type aliases requires go1.9 or later") } obj.typ = Typ[Invalid] obj.typ = check.anyType(tdecl.Type) } else { // defined type declaration named := check.newNamed(obj, nil, nil) def.setUnderlying(named) obj.typ = named // make sure recursive type declarations terminate if tparams := typeparams.Get(tdecl); tparams != nil { check.openScope(tdecl, "type parameters") defer check.closeScope() named.tparams = check.collectTypeParams(tparams) } // determine underlying type of named named.orig = check.definedType(tdecl.Type, named) // The underlying type of named may be itself a named type that is // incomplete: // // type ( // A B // B *C // C A // ) // // The type of C is the (named) type of A which is incomplete, // and which has as its underlying type the named type B. // Determine the (final, unnamed) underlying type by resolving // any forward chain. // TODO(gri) Investigate if we can just use named.origin here // and rely on lazy computation of the underlying type. named.underlying = under(named) } } func (check *Checker) collectTypeParams(list *ast.FieldList) (tparams []*TypeName) { // Type parameter lists should not be empty. The parser will // complain but we still may get an incorrect AST: ignore it. if list.NumFields() == 0 { return } // Declare type parameters up-front, with empty interface as type bound. // The scope of type parameters starts at the beginning of the type parameter // list (so we can have mutually recursive parameterized interfaces). for _, f := range list.List { tparams = check.declareTypeParams(tparams, f.Names) } setBoundAt := func(at int, bound Type) { assert(IsInterface(bound)) tparams[at].typ.(*_TypeParam).bound = bound } index := 0 var bound Type for _, f := range list.List { if f.Type == nil { goto next } // The predeclared identifier "any" is visible only as a constraint // in a type parameter list. Look for it before general constraint // resolution. if tident, _ := unparen(f.Type).(*ast.Ident); tident != nil && tident.Name == "any" && check.lookup("any") == nil { bound = universeAny } else { bound = check.typ(f.Type) } // type bound must be an interface // TODO(gri) We should delay the interface check because // we may not have a complete interface yet: // type C(type T C) interface {} // (issue #39724). if _, ok := under(bound).(*Interface); ok { // Otherwise, set the bound for each type parameter. for i := range f.Names { setBoundAt(index+i, bound) } } else if bound != Typ[Invalid] { check.errorf(f.Type, _Todo, "%s is not an interface", bound) } next: index += len(f.Names) } return } func (check *Checker) declareTypeParams(tparams []*TypeName, names []*ast.Ident) []*TypeName { for _, name := range names { tpar := NewTypeName(name.Pos(), check.pkg, name.Name, nil) check.newTypeParam(tpar, len(tparams), &emptyInterface) // assigns type to tpar as a side-effect check.declare(check.scope, name, tpar, check.scope.pos) // TODO(gri) check scope position tparams = append(tparams, tpar) } if trace && len(names) > 0 { check.trace(names[0].Pos(), "type params = %v", tparams[len(tparams)-len(names):]) } return tparams } func (check *Checker) collectMethods(obj *TypeName) { // get associated methods // (Checker.collectObjects only collects methods with non-blank names; // Checker.resolveBaseTypeName ensures that obj is not an alias name // if it has attached methods.) methods := check.methods[obj] if methods == nil { return } delete(check.methods, obj) assert(!check.objMap[obj].tdecl.Assign.IsValid()) // don't use TypeName.IsAlias (requires fully set up object) // use an objset to check for name conflicts var mset objset // spec: "If the base type is a struct type, the non-blank method // and field names must be distinct." base := asNamed(obj.typ) // shouldn't fail but be conservative if base != nil { if t, _ := base.underlying.(*Struct); t != nil { for _, fld := range t.fields { if fld.name != "_" { assert(mset.insert(fld) == nil) } } } // Checker.Files may be called multiple times; additional package files // may add methods to already type-checked types. Add pre-existing methods // so that we can detect redeclarations. for _, m := range base.methods { assert(m.name != "_") assert(mset.insert(m) == nil) } } // add valid methods for _, m := range methods { // spec: "For a base type, the non-blank names of methods bound // to it must be unique." assert(m.name != "_") if alt := mset.insert(m); alt != nil { switch alt.(type) { case *Var: check.errorf(m, _DuplicateFieldAndMethod, "field and method with the same name %s", m.name) case *Func: check.errorf(m, _DuplicateMethod, "method %s already declared for %s", m.name, obj) default: unreachable() } check.reportAltDecl(alt) continue } if base != nil { base.methods = append(base.methods, m) } } } func (check *Checker) funcDecl(obj *Func, decl *declInfo) { assert(obj.typ == nil) // func declarations cannot use iota assert(check.iota == nil) sig := new(Signature) obj.typ = sig // guard against cycles // Avoid cycle error when referring to method while type-checking the signature. // This avoids a nuisance in the best case (non-parameterized receiver type) and // since the method is not a type, we get an error. If we have a parameterized // receiver type, instantiating the receiver type leads to the instantiation of // its methods, and we don't want a cycle error in that case. // TODO(gri) review if this is correct and/or whether we still need this? saved := obj.color_ obj.color_ = black fdecl := decl.fdecl check.funcType(sig, fdecl.Recv, fdecl.Type) obj.color_ = saved // function body must be type-checked after global declarations // (functions implemented elsewhere have no body) if !check.conf.IgnoreFuncBodies && fdecl.Body != nil { check.later(func() { check.funcBody(decl, obj.name, sig, fdecl.Body, nil) }) } } func (check *Checker) declStmt(d ast.Decl) { pkg := check.pkg check.walkDecl(d, func(d decl) { switch d := d.(type) { case constDecl: top := len(check.delayed) // declare all constants lhs := make([]*Const, len(d.spec.Names)) for i, name := range d.spec.Names { obj := NewConst(name.Pos(), pkg, name.Name, nil, constant.MakeInt64(int64(d.iota))) lhs[i] = obj var init ast.Expr if i < len(d.init) { init = d.init[i] } check.constDecl(obj, d.typ, init, d.inherited) } // process function literals in init expressions before scope changes check.processDelayed(top) // spec: "The scope of a constant or variable identifier declared // inside a function begins at the end of the ConstSpec or VarSpec // (ShortVarDecl for short variable declarations) and ends at the // end of the innermost containing block." scopePos := d.spec.End() for i, name := range d.spec.Names { check.declare(check.scope, name, lhs[i], scopePos) } case varDecl: top := len(check.delayed) lhs0 := make([]*Var, len(d.spec.Names)) for i, name := range d.spec.Names { lhs0[i] = NewVar(name.Pos(), pkg, name.Name, nil) } // initialize all variables for i, obj := range lhs0 { var lhs []*Var var init ast.Expr switch len(d.spec.Values) { case len(d.spec.Names): // lhs and rhs match init = d.spec.Values[i] case 1: // rhs is expected to be a multi-valued expression lhs = lhs0 init = d.spec.Values[0] default: if i < len(d.spec.Values) { init = d.spec.Values[i] } } check.varDecl(obj, lhs, d.spec.Type, init) if len(d.spec.Values) == 1 { // If we have a single lhs variable we are done either way. // If we have a single rhs expression, it must be a multi- // valued expression, in which case handling the first lhs // variable will cause all lhs variables to have a type // assigned, and we are done as well. if debug { for _, obj := range lhs0 { assert(obj.typ != nil) } } break } } // process function literals in init expressions before scope changes check.processDelayed(top) // declare all variables // (only at this point are the variable scopes (parents) set) scopePos := d.spec.End() // see constant declarations for i, name := range d.spec.Names { // see constant declarations check.declare(check.scope, name, lhs0[i], scopePos) } case typeDecl: obj := NewTypeName(d.spec.Name.Pos(), pkg, d.spec.Name.Name, nil) // spec: "The scope of a type identifier declared inside a function // begins at the identifier in the TypeSpec and ends at the end of // the innermost containing block." scopePos := d.spec.Name.Pos() check.declare(check.scope, d.spec.Name, obj, scopePos) // mark and unmark type before calling typeDecl; its type is still nil (see Checker.objDecl) obj.setColor(grey + color(check.push(obj))) check.typeDecl(obj, d.spec, nil) check.pop().setColor(black) default: check.invalidAST(d.node(), "unknown ast.Decl node %T", d.node()) } }) }