// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package types_test import ( "bytes" "flag" "fmt" "go/ast" "go/importer" "go/parser" "go/token" "os" "testing" . "go/types" ) var ( H = flag.Int("H", 5, "Hilbert matrix size") out = flag.String("out", "", "write generated program to out") ) func TestHilbert(t *testing.T) { // generate source src := program(*H, *out) if *out != "" { os.WriteFile(*out, src, 0666) return } // parse source fset := token.NewFileSet() f, err := parser.ParseFile(fset, "hilbert.go", src, 0) if err != nil { t.Fatal(err) } // type-check file DefPredeclaredTestFuncs() // define assert built-in conf := Config{Importer: importer.Default()} _, err = conf.Check(f.Name.Name, fset, []*ast.File{f}, nil) if err != nil { t.Fatal(err) } } func program(n int, out string) []byte { var g gen g.p(`// Code generated by: go test -run=Hilbert -H=%d -out=%q. DO NOT EDIT. // +`+`build ignore // This program tests arbitrary precision constant arithmetic // by generating the constant elements of a Hilbert matrix H, // its inverse I, and the product P = H*I. The product should // be the identity matrix. package main func main() { if !ok { printProduct() return } println("PASS") } `, n, out) g.hilbert(n) g.inverse(n) g.product(n) g.verify(n) g.printProduct(n) g.binomials(2*n - 1) g.factorials(2*n - 1) return g.Bytes() } type gen struct { bytes.Buffer } func (g *gen) p(format string, args ...interface{}) { fmt.Fprintf(&g.Buffer, format, args...) } func (g *gen) hilbert(n int) { g.p(`// Hilbert matrix, n = %d const ( `, n) for i := 0; i < n; i++ { g.p("\t") for j := 0; j < n; j++ { if j > 0 { g.p(", ") } g.p("h%d_%d", i, j) } if i == 0 { g.p(" = ") for j := 0; j < n; j++ { if j > 0 { g.p(", ") } g.p("1.0/(iota + %d)", j+1) } } g.p("\n") } g.p(")\n\n") } func (g *gen) inverse(n int) { g.p(`// Inverse Hilbert matrix const ( `) for i := 0; i < n; i++ { for j := 0; j < n; j++ { s := "+" if (i+j)&1 != 0 { s = "-" } g.p("\ti%d_%d = %s%d * b%d_%d * b%d_%d * b%d_%d * b%d_%d\n", i, j, s, i+j+1, n+i, n-j-1, n+j, n-i-1, i+j, i, i+j, i) } g.p("\n") } g.p(")\n\n") } func (g *gen) product(n int) { g.p(`// Product matrix const ( `) for i := 0; i < n; i++ { for j := 0; j < n; j++ { g.p("\tp%d_%d = ", i, j) for k := 0; k < n; k++ { if k > 0 { g.p(" + ") } g.p("h%d_%d*i%d_%d", i, k, k, j) } g.p("\n") } g.p("\n") } g.p(")\n\n") } func (g *gen) verify(n int) { g.p(`// Verify that product is the identity matrix const ok = `) for i := 0; i < n; i++ { for j := 0; j < n; j++ { if j == 0 { g.p("\t") } else { g.p(" && ") } v := 0 if i == j { v = 1 } g.p("p%d_%d == %d", i, j, v) } g.p(" &&\n") } g.p("\ttrue\n\n") // verify ok at type-check time if *out == "" { g.p("const _ = assert(ok)\n\n") } } func (g *gen) printProduct(n int) { g.p("func printProduct() {\n") for i := 0; i < n; i++ { g.p("\tprintln(") for j := 0; j < n; j++ { if j > 0 { g.p(", ") } g.p("p%d_%d", i, j) } g.p(")\n") } g.p("}\n\n") } func (g *gen) binomials(n int) { g.p(`// Binomials const ( `) for j := 0; j <= n; j++ { if j > 0 { g.p("\n") } for k := 0; k <= j; k++ { g.p("\tb%d_%d = f%d / (f%d*f%d)\n", j, k, j, k, j-k) } } g.p(")\n\n") } func (g *gen) factorials(n int) { g.p(`// Factorials const ( f0 = 1 f1 = 1 `) for i := 2; i <= n; i++ { g.p("\tf%d = f%d * %d\n", i, i-1, i) } g.p(")\n\n") }