// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build !math_big_pure_go && (ppc64 || ppc64le) // +build !math_big_pure_go // +build ppc64 ppc64le #include "textflag.h" // This file provides fast assembly versions for the elementary // arithmetic operations on vectors implemented in arith.go. // func mulWW(x, y Word) (z1, z0 Word) TEXT ·mulWW(SB), NOSPLIT, $0 MOVD x+0(FP), R4 MOVD y+8(FP), R5 MULHDU R4, R5, R6 MULLD R4, R5, R7 MOVD R6, z1+16(FP) MOVD R7, z0+24(FP) RET // func addVV(z, y, y []Word) (c Word) // z[i] = x[i] + y[i] for all i, carrying TEXT ·addVV(SB), NOSPLIT, $0 MOVD z_len+8(FP), R7 // R7 = z_len MOVD x+24(FP), R8 // R8 = x[] MOVD y+48(FP), R9 // R9 = y[] MOVD z+0(FP), R10 // R10 = z[] // If z_len = 0, we are done CMP R0, R7 MOVD R0, R4 BEQ done // Process the first iteration out of the loop so we can // use MOVDU and avoid 3 index registers updates. MOVD 0(R8), R11 // R11 = x[i] MOVD 0(R9), R12 // R12 = y[i] ADD $-1, R7 // R7 = z_len - 1 ADDC R12, R11, R15 // R15 = x[i] + y[i], set CA CMP R0, R7 MOVD R15, 0(R10) // z[i] BEQ final // If z_len was 1, we are done SRD $2, R7, R5 // R5 = z_len/4 CMP R0, R5 MOVD R5, CTR // Set up loop counter BEQ tail // If R5 = 0, we can't use the loop // Process 4 elements per iteration. Unrolling this loop // means a performance trade-off: we will lose performance // for small values of z_len (0.90x in the worst case), but // gain significant performance as z_len increases (up to // 1.45x). loop: MOVD 8(R8), R11 // R11 = x[i] MOVD 16(R8), R12 // R12 = x[i+1] MOVD 24(R8), R14 // R14 = x[i+2] MOVDU 32(R8), R15 // R15 = x[i+3] MOVD 8(R9), R16 // R16 = y[i] MOVD 16(R9), R17 // R17 = y[i+1] MOVD 24(R9), R18 // R18 = y[i+2] MOVDU 32(R9), R19 // R19 = y[i+3] ADDE R11, R16, R20 // R20 = x[i] + y[i] + CA ADDE R12, R17, R21 // R21 = x[i+1] + y[i+1] + CA ADDE R14, R18, R22 // R22 = x[i+2] + y[i+2] + CA ADDE R15, R19, R23 // R23 = x[i+3] + y[i+3] + CA MOVD R20, 8(R10) // z[i] MOVD R21, 16(R10) // z[i+1] MOVD R22, 24(R10) // z[i+2] MOVDU R23, 32(R10) // z[i+3] ADD $-4, R7 // R7 = z_len - 4 BC 16, 0, loop // bdnz // We may have more elements to read CMP R0, R7 BEQ final // Process the remaining elements, one at a time tail: MOVDU 8(R8), R11 // R11 = x[i] MOVDU 8(R9), R16 // R16 = y[i] ADD $-1, R7 // R7 = z_len - 1 ADDE R11, R16, R20 // R20 = x[i] + y[i] + CA CMP R0, R7 MOVDU R20, 8(R10) // z[i] BEQ final // If R7 = 0, we are done MOVDU 8(R8), R11 MOVDU 8(R9), R16 ADD $-1, R7 ADDE R11, R16, R20 CMP R0, R7 MOVDU R20, 8(R10) BEQ final MOVD 8(R8), R11 MOVD 8(R9), R16 ADDE R11, R16, R20 MOVD R20, 8(R10) final: ADDZE R4 // Capture CA done: MOVD R4, c+72(FP) RET // func subVV(z, x, y []Word) (c Word) // z[i] = x[i] - y[i] for all i, carrying TEXT ·subVV(SB), NOSPLIT, $0 MOVD z_len+8(FP), R7 // R7 = z_len MOVD x+24(FP), R8 // R8 = x[] MOVD y+48(FP), R9 // R9 = y[] MOVD z+0(FP), R10 // R10 = z[] // If z_len = 0, we are done CMP R0, R7 MOVD R0, R4 BEQ done // Process the first iteration out of the loop so we can // use MOVDU and avoid 3 index registers updates. MOVD 0(R8), R11 // R11 = x[i] MOVD 0(R9), R12 // R12 = y[i] ADD $-1, R7 // R7 = z_len - 1 SUBC R12, R11, R15 // R15 = x[i] - y[i], set CA CMP R0, R7 MOVD R15, 0(R10) // z[i] BEQ final // If z_len was 1, we are done SRD $2, R7, R5 // R5 = z_len/4 CMP R0, R5 MOVD R5, CTR // Set up loop counter BEQ tail // If R5 = 0, we can't use the loop // Process 4 elements per iteration. Unrolling this loop // means a performance trade-off: we will lose performance // for small values of z_len (0.92x in the worst case), but // gain significant performance as z_len increases (up to // 1.45x). loop: MOVD 8(R8), R11 // R11 = x[i] MOVD 16(R8), R12 // R12 = x[i+1] MOVD 24(R8), R14 // R14 = x[i+2] MOVDU 32(R8), R15 // R15 = x[i+3] MOVD 8(R9), R16 // R16 = y[i] MOVD 16(R9), R17 // R17 = y[i+1] MOVD 24(R9), R18 // R18 = y[i+2] MOVDU 32(R9), R19 // R19 = y[i+3] SUBE R16, R11, R20 // R20 = x[i] - y[i] + CA SUBE R17, R12, R21 // R21 = x[i+1] - y[i+1] + CA SUBE R18, R14, R22 // R22 = x[i+2] - y[i+2] + CA SUBE R19, R15, R23 // R23 = x[i+3] - y[i+3] + CA MOVD R20, 8(R10) // z[i] MOVD R21, 16(R10) // z[i+1] MOVD R22, 24(R10) // z[i+2] MOVDU R23, 32(R10) // z[i+3] ADD $-4, R7 // R7 = z_len - 4 BC 16, 0, loop // bdnz // We may have more elements to read CMP R0, R7 BEQ final // Process the remaining elements, one at a time tail: MOVDU 8(R8), R11 // R11 = x[i] MOVDU 8(R9), R16 // R16 = y[i] ADD $-1, R7 // R7 = z_len - 1 SUBE R16, R11, R20 // R20 = x[i] - y[i] + CA CMP R0, R7 MOVDU R20, 8(R10) // z[i] BEQ final // If R7 = 0, we are done MOVDU 8(R8), R11 MOVDU 8(R9), R16 ADD $-1, R7 SUBE R16, R11, R20 CMP R0, R7 MOVDU R20, 8(R10) BEQ final MOVD 8(R8), R11 MOVD 8(R9), R16 SUBE R16, R11, R20 MOVD R20, 8(R10) final: ADDZE R4 XOR $1, R4 done: MOVD R4, c+72(FP) RET // func addVW(z, x []Word, y Word) (c Word) TEXT ·addVW(SB), NOSPLIT, $0 MOVD z+0(FP), R10 // R10 = z[] MOVD x+24(FP), R8 // R8 = x[] MOVD y+48(FP), R4 // R4 = y = c MOVD z_len+8(FP), R11 // R11 = z_len CMP R0, R11 // If z_len is zero, return BEQ done // We will process the first iteration out of the loop so we capture // the value of c. In the subsequent iterations, we will rely on the // value of CA set here. MOVD 0(R8), R20 // R20 = x[i] ADD $-1, R11 // R11 = z_len - 1 ADDC R20, R4, R6 // R6 = x[i] + c CMP R0, R11 // If z_len was 1, we are done MOVD R6, 0(R10) // z[i] BEQ final // We will read 4 elements per iteration SRD $2, R11, R9 // R9 = z_len/4 DCBT (R8) CMP R0, R9 MOVD R9, CTR // Set up the loop counter BEQ tail // If R9 = 0, we can't use the loop loop: MOVD 8(R8), R20 // R20 = x[i] MOVD 16(R8), R21 // R21 = x[i+1] MOVD 24(R8), R22 // R22 = x[i+2] MOVDU 32(R8), R23 // R23 = x[i+3] ADDZE R20, R24 // R24 = x[i] + CA ADDZE R21, R25 // R25 = x[i+1] + CA ADDZE R22, R26 // R26 = x[i+2] + CA ADDZE R23, R27 // R27 = x[i+3] + CA MOVD R24, 8(R10) // z[i] MOVD R25, 16(R10) // z[i+1] MOVD R26, 24(R10) // z[i+2] MOVDU R27, 32(R10) // z[i+3] ADD $-4, R11 // R11 = z_len - 4 BC 16, 0, loop // bdnz // We may have some elements to read CMP R0, R11 BEQ final tail: MOVDU 8(R8), R20 ADDZE R20, R24 ADD $-1, R11 MOVDU R24, 8(R10) CMP R0, R11 BEQ final MOVDU 8(R8), R20 ADDZE R20, R24 ADD $-1, R11 MOVDU R24, 8(R10) CMP R0, R11 BEQ final MOVD 8(R8), R20 ADDZE R20, R24 MOVD R24, 8(R10) final: ADDZE R0, R4 // c = CA done: MOVD R4, c+56(FP) RET // func subVW(z, x []Word, y Word) (c Word) TEXT ·subVW(SB), NOSPLIT, $0 MOVD z+0(FP), R10 // R10 = z[] MOVD x+24(FP), R8 // R8 = x[] MOVD y+48(FP), R4 // R4 = y = c MOVD z_len+8(FP), R11 // R11 = z_len CMP R0, R11 // If z_len is zero, return BEQ done // We will process the first iteration out of the loop so we capture // the value of c. In the subsequent iterations, we will rely on the // value of CA set here. MOVD 0(R8), R20 // R20 = x[i] ADD $-1, R11 // R11 = z_len - 1 SUBC R4, R20, R6 // R6 = x[i] - c CMP R0, R11 // If z_len was 1, we are done MOVD R6, 0(R10) // z[i] BEQ final // We will read 4 elements per iteration SRD $2, R11, R9 // R9 = z_len/4 DCBT (R8) CMP R0, R9 MOVD R9, CTR // Set up the loop counter BEQ tail // If R9 = 0, we can't use the loop // The loop here is almost the same as the one used in s390x, but // we don't need to capture CA every iteration because we've already // done that above. loop: MOVD 8(R8), R20 MOVD 16(R8), R21 MOVD 24(R8), R22 MOVDU 32(R8), R23 SUBE R0, R20 SUBE R0, R21 SUBE R0, R22 SUBE R0, R23 MOVD R20, 8(R10) MOVD R21, 16(R10) MOVD R22, 24(R10) MOVDU R23, 32(R10) ADD $-4, R11 BC 16, 0, loop // bdnz // We may have some elements to read CMP R0, R11 BEQ final tail: MOVDU 8(R8), R20 SUBE R0, R20 ADD $-1, R11 MOVDU R20, 8(R10) CMP R0, R11 BEQ final MOVDU 8(R8), R20 SUBE R0, R20 ADD $-1, R11 MOVDU R20, 8(R10) CMP R0, R11 BEQ final MOVD 8(R8), R20 SUBE R0, R20 MOVD R20, 8(R10) final: // Capture CA SUBE R4, R4 NEG R4, R4 done: MOVD R4, c+56(FP) RET TEXT ·shlVU(SB), NOSPLIT, $0 BR ·shlVU_g(SB) TEXT ·shrVU(SB), NOSPLIT, $0 BR ·shrVU_g(SB) // func mulAddVWW(z, x []Word, y, r Word) (c Word) TEXT ·mulAddVWW(SB), NOSPLIT, $0 MOVD z+0(FP), R10 // R10 = z[] MOVD x+24(FP), R8 // R8 = x[] MOVD y+48(FP), R9 // R9 = y MOVD r+56(FP), R4 // R4 = r = c MOVD z_len+8(FP), R11 // R11 = z_len CMP R0, R11 BEQ done MOVD 0(R8), R20 ADD $-1, R11 MULLD R9, R20, R6 // R6 = z0 = Low-order(x[i]*y) MULHDU R9, R20, R7 // R7 = z1 = High-order(x[i]*y) ADDC R4, R6 // R6 = z0 + r ADDZE R7 // R7 = z1 + CA CMP R0, R11 MOVD R7, R4 // R4 = c MOVD R6, 0(R10) // z[i] BEQ done // We will read 4 elements per iteration SRD $2, R11, R14 // R14 = z_len/4 DCBT (R8) CMP R0, R14 MOVD R14, CTR // Set up the loop counter BEQ tail // If R9 = 0, we can't use the loop loop: MOVD 8(R8), R20 // R20 = x[i] MOVD 16(R8), R21 // R21 = x[i+1] MOVD 24(R8), R22 // R22 = x[i+2] MOVDU 32(R8), R23 // R23 = x[i+3] MULLD R9, R20, R24 // R24 = z0[i] MULHDU R9, R20, R20 // R20 = z1[i] ADDC R4, R24 // R24 = z0[i] + c ADDZE R20 // R7 = z1[i] + CA MULLD R9, R21, R25 MULHDU R9, R21, R21 ADDC R20, R25 ADDZE R21 MULLD R9, R22, R26 MULHDU R9, R22, R22 MULLD R9, R23, R27 MULHDU R9, R23, R23 ADDC R21, R26 ADDZE R22 MOVD R24, 8(R10) // z[i] MOVD R25, 16(R10) // z[i+1] ADDC R22, R27 ADDZE R23,R4 // update carry MOVD R26, 24(R10) // z[i+2] MOVDU R27, 32(R10) // z[i+3] ADD $-4, R11 // R11 = z_len - 4 BC 16, 0, loop // bdnz // We may have some elements to read CMP R0, R11 BEQ done // Process the remaining elements, one at a time tail: MOVDU 8(R8), R20 // R20 = x[i] MULLD R9, R20, R24 // R24 = z0[i] MULHDU R9, R20, R25 // R25 = z1[i] ADD $-1, R11 // R11 = z_len - 1 ADDC R4, R24 ADDZE R25 MOVDU R24, 8(R10) // z[i] CMP R0, R11 MOVD R25, R4 // R4 = c BEQ done // If R11 = 0, we are done MOVDU 8(R8), R20 MULLD R9, R20, R24 MULHDU R9, R20, R25 ADD $-1, R11 ADDC R4, R24 ADDZE R25 MOVDU R24, 8(R10) CMP R0, R11 MOVD R25, R4 BEQ done MOVD 8(R8), R20 MULLD R9, R20, R24 MULHDU R9, R20, R25 ADD $-1, R11 ADDC R4, R24 ADDZE R25 MOVD R24, 8(R10) MOVD R25, R4 done: MOVD R4, c+64(FP) RET // func addMulVVW(z, x []Word, y Word) (c Word) TEXT ·addMulVVW(SB), NOSPLIT, $0 MOVD z+0(FP), R10 // R10 = z[] MOVD x+24(FP), R8 // R8 = x[] MOVD y+48(FP), R9 // R9 = y MOVD z_len+8(FP), R22 // R22 = z_len MOVD R0, R3 // R3 will be the index register CMP R0, R22 MOVD R0, R4 // R4 = c = 0 MOVD R22, CTR // Initialize loop counter BEQ done loop: MOVD (R8)(R3), R20 // Load x[i] MOVD (R10)(R3), R21 // Load z[i] MULLD R9, R20, R6 // R6 = Low-order(x[i]*y) MULHDU R9, R20, R7 // R7 = High-order(x[i]*y) ADDC R21, R6 // R6 = z0 ADDZE R7 // R7 = z1 ADDC R4, R6 // R6 = z0 + c + 0 ADDZE R7, R4 // c += z1 MOVD R6, (R10)(R3) // Store z[i] ADD $8, R3 BC 16, 0, loop // bdnz done: MOVD R4, c+56(FP) RET