// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package cmplx import ( "math" "math/bits" ) // The original C code, the long comment, and the constants // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. // The go code is a simplified version of the original C. // // Cephes Math Library Release 2.8: June, 2000 // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier // // The readme file at http://netlib.sandia.gov/cephes/ says: // Some software in this archive may be from the book _Methods and // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster // International, 1989) or from the Cephes Mathematical Library, a // commercial product. In either event, it is copyrighted by the author. // What you see here may be used freely but it comes with no support or // guarantee. // // The two known misprints in the book are repaired here in the // source listings for the gamma function and the incomplete beta // integral. // // Stephen L. Moshier // moshier@na-net.ornl.gov // Complex circular tangent // // DESCRIPTION: // // If // z = x + iy, // // then // // sin 2x + i sinh 2y // w = --------------------. // cos 2x + cosh 2y // // On the real axis the denominator is zero at odd multiples // of PI/2. The denominator is evaluated by its Taylor // series near these points. // // ctan(z) = -i ctanh(iz). // // ACCURACY: // // Relative error: // arithmetic domain # trials peak rms // DEC -10,+10 5200 7.1e-17 1.6e-17 // IEEE -10,+10 30000 7.2e-16 1.2e-16 // Also tested by ctan * ccot = 1 and catan(ctan(z)) = z. // Tan returns the tangent of x. func Tan(x complex128) complex128 { switch re, im := real(x), imag(x); { case math.IsInf(im, 0): switch { case math.IsInf(re, 0) || math.IsNaN(re): return complex(math.Copysign(0, re), math.Copysign(1, im)) } return complex(math.Copysign(0, math.Sin(2*re)), math.Copysign(1, im)) case re == 0 && math.IsNaN(im): return x } d := math.Cos(2*real(x)) + math.Cosh(2*imag(x)) if math.Abs(d) < 0.25 { d = tanSeries(x) } if d == 0 { return Inf() } return complex(math.Sin(2*real(x))/d, math.Sinh(2*imag(x))/d) } // Complex hyperbolic tangent // // DESCRIPTION: // // tanh z = (sinh 2x + i sin 2y) / (cosh 2x + cos 2y) . // // ACCURACY: // // Relative error: // arithmetic domain # trials peak rms // IEEE -10,+10 30000 1.7e-14 2.4e-16 // Tanh returns the hyperbolic tangent of x. func Tanh(x complex128) complex128 { switch re, im := real(x), imag(x); { case math.IsInf(re, 0): switch { case math.IsInf(im, 0) || math.IsNaN(im): return complex(math.Copysign(1, re), math.Copysign(0, im)) } return complex(math.Copysign(1, re), math.Copysign(0, math.Sin(2*im))) case im == 0 && math.IsNaN(re): return x } d := math.Cosh(2*real(x)) + math.Cos(2*imag(x)) if d == 0 { return Inf() } return complex(math.Sinh(2*real(x))/d, math.Sin(2*imag(x))/d) } // reducePi reduces the input argument x to the range (-Pi/2, Pi/2]. // x must be greater than or equal to 0. For small arguments it // uses Cody-Waite reduction in 3 float64 parts based on: // "Elementary Function Evaluation: Algorithms and Implementation" // Jean-Michel Muller, 1997. // For very large arguments it uses Payne-Hanek range reduction based on: // "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit" // K. C. Ng et al, March 24, 1992. func reducePi(x float64) float64 { // reduceThreshold is the maximum value of x where the reduction using // Cody-Waite reduction still gives accurate results. This threshold // is set by t*PIn being representable as a float64 without error // where t is given by t = floor(x * (1 / Pi)) and PIn are the leading partial // terms of Pi. Since the leading terms, PI1 and PI2 below, have 30 and 32 // trailing zero bits respectively, t should have less than 30 significant bits. // t < 1<<30 -> floor(x*(1/Pi)+0.5) < 1<<30 -> x < (1<<30-1) * Pi - 0.5 // So, conservatively we can take x < 1<<30. const reduceThreshold float64 = 1 << 30 if math.Abs(x) < reduceThreshold { // Use Cody-Waite reduction in three parts. const ( // PI1, PI2 and PI3 comprise an extended precision value of PI // such that PI ~= PI1 + PI2 + PI3. The parts are chosen so // that PI1 and PI2 have an approximately equal number of trailing // zero bits. This ensures that t*PI1 and t*PI2 are exact for // large integer values of t. The full precision PI3 ensures the // approximation of PI is accurate to 102 bits to handle cancellation // during subtraction. PI1 = 3.141592502593994 // 0x400921fb40000000 PI2 = 1.5099578831723193e-07 // 0x3e84442d00000000 PI3 = 1.0780605716316238e-14 // 0x3d08469898cc5170 ) t := x / math.Pi t += 0.5 t = float64(int64(t)) // int64(t) = the multiple return ((x - t*PI1) - t*PI2) - t*PI3 } // Must apply Payne-Hanek range reduction const ( mask = 0x7FF shift = 64 - 11 - 1 bias = 1023 fracMask = 1<>shift&mask) - bias - shift ix &= fracMask ix |= 1 << shift // mPi is the binary digits of 1/Pi as a uint64 array, // that is, 1/Pi = Sum mPi[i]*2^(-64*i). // 19 64-bit digits give 1216 bits of precision // to handle the largest possible float64 exponent. var mPi = [...]uint64{ 0x0000000000000000, 0x517cc1b727220a94, 0xfe13abe8fa9a6ee0, 0x6db14acc9e21c820, 0xff28b1d5ef5de2b0, 0xdb92371d2126e970, 0x0324977504e8c90e, 0x7f0ef58e5894d39f, 0x74411afa975da242, 0x74ce38135a2fbf20, 0x9cc8eb1cc1a99cfa, 0x4e422fc5defc941d, 0x8ffc4bffef02cc07, 0xf79788c5ad05368f, 0xb69b3f6793e584db, 0xa7a31fb34f2ff516, 0xba93dd63f5f2f8bd, 0x9e839cfbc5294975, 0x35fdafd88fc6ae84, 0x2b0198237e3db5d5, } // Use the exponent to extract the 3 appropriate uint64 digits from mPi, // B ~ (z0, z1, z2), such that the product leading digit has the exponent -64. // Note, exp >= 50 since x >= reduceThreshold and exp < 971 for maximum float64. digit, bitshift := uint(exp+64)/64, uint(exp+64)%64 z0 := (mPi[digit] << bitshift) | (mPi[digit+1] >> (64 - bitshift)) z1 := (mPi[digit+1] << bitshift) | (mPi[digit+2] >> (64 - bitshift)) z2 := (mPi[digit+2] << bitshift) | (mPi[digit+3] >> (64 - bitshift)) // Multiply mantissa by the digits and extract the upper two digits (hi, lo). z2hi, _ := bits.Mul64(z2, ix) z1hi, z1lo := bits.Mul64(z1, ix) z0lo := z0 * ix lo, c := bits.Add64(z1lo, z2hi, 0) hi, _ := bits.Add64(z0lo, z1hi, c) // Find the magnitude of the fraction. lz := uint(bits.LeadingZeros64(hi)) e := uint64(bias - (lz + 1)) // Clear implicit mantissa bit and shift into place. hi = (hi << (lz + 1)) | (lo >> (64 - (lz + 1))) hi >>= 64 - shift // Include the exponent and convert to a float. hi |= e << shift x = math.Float64frombits(hi) // map to (-Pi/2, Pi/2] if x > 0.5 { x-- } return math.Pi * x } // Taylor series expansion for cosh(2y) - cos(2x) func tanSeries(z complex128) float64 { const MACHEP = 1.0 / (1 << 53) x := math.Abs(2 * real(z)) y := math.Abs(2 * imag(z)) x = reducePi(x) x = x * x y = y * y x2 := 1.0 y2 := 1.0 f := 1.0 rn := 0.0 d := 0.0 for { rn++ f *= rn rn++ f *= rn x2 *= x y2 *= y t := y2 + x2 t /= f d += t rn++ f *= rn rn++ f *= rn x2 *= x y2 *= y t = y2 - x2 t /= f d += t if !(math.Abs(t/d) > MACHEP) { // Caution: Use ! and > instead of <= for correct behavior if t/d is NaN. // See issue 17577. break } } return d } // Complex circular cotangent // // DESCRIPTION: // // If // z = x + iy, // // then // // sin 2x - i sinh 2y // w = --------------------. // cosh 2y - cos 2x // // On the real axis, the denominator has zeros at even // multiples of PI/2. Near these points it is evaluated // by a Taylor series. // // ACCURACY: // // Relative error: // arithmetic domain # trials peak rms // DEC -10,+10 3000 6.5e-17 1.6e-17 // IEEE -10,+10 30000 9.2e-16 1.2e-16 // Also tested by ctan * ccot = 1 + i0. // Cot returns the cotangent of x. func Cot(x complex128) complex128 { d := math.Cosh(2*imag(x)) - math.Cos(2*real(x)) if math.Abs(d) < 0.25 { d = tanSeries(x) } if d == 0 { return Inf() } return complex(math.Sin(2*real(x))/d, -math.Sinh(2*imag(x))/d) }