Black Lives Matter. Support the Equal Justice Initiative.

Source file src/math/exp.go

Documentation: math

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package math
     6  
     7  // Exp returns e**x, the base-e exponential of x.
     8  //
     9  // Special cases are:
    10  //	Exp(+Inf) = +Inf
    11  //	Exp(NaN) = NaN
    12  // Very large values overflow to 0 or +Inf.
    13  // Very small values underflow to 1.
    14  func Exp(x float64) float64 {
    15  	if haveArchExp {
    16  		return archExp(x)
    17  	}
    18  	return exp(x)
    19  }
    20  
    21  // The original C code, the long comment, and the constants
    22  // below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c
    23  // and came with this notice. The go code is a simplified
    24  // version of the original C.
    25  //
    26  // ====================================================
    27  // Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
    28  //
    29  // Permission to use, copy, modify, and distribute this
    30  // software is freely granted, provided that this notice
    31  // is preserved.
    32  // ====================================================
    33  //
    34  //
    35  // exp(x)
    36  // Returns the exponential of x.
    37  //
    38  // Method
    39  //   1. Argument reduction:
    40  //      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
    41  //      Given x, find r and integer k such that
    42  //
    43  //               x = k*ln2 + r,  |r| <= 0.5*ln2.
    44  //
    45  //      Here r will be represented as r = hi-lo for better
    46  //      accuracy.
    47  //
    48  //   2. Approximation of exp(r) by a special rational function on
    49  //      the interval [0,0.34658]:
    50  //      Write
    51  //          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
    52  //      We use a special Remez algorithm on [0,0.34658] to generate
    53  //      a polynomial of degree 5 to approximate R. The maximum error
    54  //      of this polynomial approximation is bounded by 2**-59. In
    55  //      other words,
    56  //          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
    57  //      (where z=r*r, and the values of P1 to P5 are listed below)
    58  //      and
    59  //          |                  5          |     -59
    60  //          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
    61  //          |                             |
    62  //      The computation of exp(r) thus becomes
    63  //                             2*r
    64  //              exp(r) = 1 + -------
    65  //                            R - r
    66  //                                 r*R1(r)
    67  //                     = 1 + r + ----------- (for better accuracy)
    68  //                                2 - R1(r)
    69  //      where
    70  //                               2       4             10
    71  //              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
    72  //
    73  //   3. Scale back to obtain exp(x):
    74  //      From step 1, we have
    75  //         exp(x) = 2**k * exp(r)
    76  //
    77  // Special cases:
    78  //      exp(INF) is INF, exp(NaN) is NaN;
    79  //      exp(-INF) is 0, and
    80  //      for finite argument, only exp(0)=1 is exact.
    81  //
    82  // Accuracy:
    83  //      according to an error analysis, the error is always less than
    84  //      1 ulp (unit in the last place).
    85  //
    86  // Misc. info.
    87  //      For IEEE double
    88  //          if x >  7.09782712893383973096e+02 then exp(x) overflow
    89  //          if x < -7.45133219101941108420e+02 then exp(x) underflow
    90  //
    91  // Constants:
    92  // The hexadecimal values are the intended ones for the following
    93  // constants. The decimal values may be used, provided that the
    94  // compiler will convert from decimal to binary accurately enough
    95  // to produce the hexadecimal values shown.
    96  
    97  func exp(x float64) float64 {
    98  	const (
    99  		Ln2Hi = 6.93147180369123816490e-01
   100  		Ln2Lo = 1.90821492927058770002e-10
   101  		Log2e = 1.44269504088896338700e+00
   102  
   103  		Overflow  = 7.09782712893383973096e+02
   104  		Underflow = -7.45133219101941108420e+02
   105  		NearZero  = 1.0 / (1 << 28) // 2**-28
   106  	)
   107  
   108  	// special cases
   109  	switch {
   110  	case IsNaN(x) || IsInf(x, 1):
   111  		return x
   112  	case IsInf(x, -1):
   113  		return 0
   114  	case x > Overflow:
   115  		return Inf(1)
   116  	case x < Underflow:
   117  		return 0
   118  	case -NearZero < x && x < NearZero:
   119  		return 1 + x
   120  	}
   121  
   122  	// reduce; computed as r = hi - lo for extra precision.
   123  	var k int
   124  	switch {
   125  	case x < 0:
   126  		k = int(Log2e*x - 0.5)
   127  	case x > 0:
   128  		k = int(Log2e*x + 0.5)
   129  	}
   130  	hi := x - float64(k)*Ln2Hi
   131  	lo := float64(k) * Ln2Lo
   132  
   133  	// compute
   134  	return expmulti(hi, lo, k)
   135  }
   136  
   137  // Exp2 returns 2**x, the base-2 exponential of x.
   138  //
   139  // Special cases are the same as Exp.
   140  func Exp2(x float64) float64 {
   141  	if haveArchExp2 {
   142  		return archExp2(x)
   143  	}
   144  	return exp2(x)
   145  }
   146  
   147  func exp2(x float64) float64 {
   148  	const (
   149  		Ln2Hi = 6.93147180369123816490e-01
   150  		Ln2Lo = 1.90821492927058770002e-10
   151  
   152  		Overflow  = 1.0239999999999999e+03
   153  		Underflow = -1.0740e+03
   154  	)
   155  
   156  	// special cases
   157  	switch {
   158  	case IsNaN(x) || IsInf(x, 1):
   159  		return x
   160  	case IsInf(x, -1):
   161  		return 0
   162  	case x > Overflow:
   163  		return Inf(1)
   164  	case x < Underflow:
   165  		return 0
   166  	}
   167  
   168  	// argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2.
   169  	// computed as r = hi - lo for extra precision.
   170  	var k int
   171  	switch {
   172  	case x > 0:
   173  		k = int(x + 0.5)
   174  	case x < 0:
   175  		k = int(x - 0.5)
   176  	}
   177  	t := x - float64(k)
   178  	hi := t * Ln2Hi
   179  	lo := -t * Ln2Lo
   180  
   181  	// compute
   182  	return expmulti(hi, lo, k)
   183  }
   184  
   185  // exp1 returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2.
   186  func expmulti(hi, lo float64, k int) float64 {
   187  	const (
   188  		P1 = 1.66666666666666657415e-01  /* 0x3FC55555; 0x55555555 */
   189  		P2 = -2.77777777770155933842e-03 /* 0xBF66C16C; 0x16BEBD93 */
   190  		P3 = 6.61375632143793436117e-05  /* 0x3F11566A; 0xAF25DE2C */
   191  		P4 = -1.65339022054652515390e-06 /* 0xBEBBBD41; 0xC5D26BF1 */
   192  		P5 = 4.13813679705723846039e-08  /* 0x3E663769; 0x72BEA4D0 */
   193  	)
   194  
   195  	r := hi - lo
   196  	t := r * r
   197  	c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))))
   198  	y := 1 - ((lo - (r*c)/(2-c)) - hi)
   199  	// TODO(rsc): make sure Ldexp can handle boundary k
   200  	return Ldexp(y, k)
   201  }
   202  

View as plain text