// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Cgo call and callback support. // // To call into the C function f from Go, the cgo-generated code calls // runtime.cgocall(_cgo_Cfunc_f, frame), where _cgo_Cfunc_f is a // gcc-compiled function written by cgo. // // runtime.cgocall (below) calls entersyscall so as not to block // other goroutines or the garbage collector, and then calls // runtime.asmcgocall(_cgo_Cfunc_f, frame). // // runtime.asmcgocall (in asm_$GOARCH.s) switches to the m->g0 stack // (assumed to be an operating system-allocated stack, so safe to run // gcc-compiled code on) and calls _cgo_Cfunc_f(frame). // // _cgo_Cfunc_f invokes the actual C function f with arguments // taken from the frame structure, records the results in the frame, // and returns to runtime.asmcgocall. // // After it regains control, runtime.asmcgocall switches back to the // original g (m->curg)'s stack and returns to runtime.cgocall. // // After it regains control, runtime.cgocall calls exitsyscall, which blocks // until this m can run Go code without violating the $GOMAXPROCS limit, // and then unlocks g from m. // // The above description skipped over the possibility of the gcc-compiled // function f calling back into Go. If that happens, we continue down // the rabbit hole during the execution of f. // // To make it possible for gcc-compiled C code to call a Go function p.GoF, // cgo writes a gcc-compiled function named GoF (not p.GoF, since gcc doesn't // know about packages). The gcc-compiled C function f calls GoF. // // GoF initializes "frame", a structure containing all of its // arguments and slots for p.GoF's results. It calls // crosscall2(_cgoexp_GoF, frame, framesize, ctxt) using the gcc ABI. // // crosscall2 (in cgo/asm_$GOARCH.s) is a four-argument adapter from // the gcc function call ABI to the gc function call ABI. At this // point we're in the Go runtime, but we're still running on m.g0's // stack and outside the $GOMAXPROCS limit. crosscall2 calls // runtime.cgocallback(_cgoexp_GoF, frame, ctxt) using the gc ABI. // (crosscall2's framesize argument is no longer used, but there's one // case where SWIG calls crosscall2 directly and expects to pass this // argument. See _cgo_panic.) // // runtime.cgocallback (in asm_$GOARCH.s) switches from m.g0's stack // to the original g (m.curg)'s stack, on which it calls // runtime.cgocallbackg(_cgoexp_GoF, frame, ctxt). As part of the // stack switch, runtime.cgocallback saves the current SP as // m.g0.sched.sp, so that any use of m.g0's stack during the execution // of the callback will be done below the existing stack frames. // Before overwriting m.g0.sched.sp, it pushes the old value on the // m.g0 stack, so that it can be restored later. // // runtime.cgocallbackg (below) is now running on a real goroutine // stack (not an m.g0 stack). First it calls runtime.exitsyscall, which will // block until the $GOMAXPROCS limit allows running this goroutine. // Once exitsyscall has returned, it is safe to do things like call the memory // allocator or invoke the Go callback function. runtime.cgocallbackg // first defers a function to unwind m.g0.sched.sp, so that if p.GoF // panics, m.g0.sched.sp will be restored to its old value: the m.g0 stack // and the m.curg stack will be unwound in lock step. // Then it calls _cgoexp_GoF(frame). // // _cgoexp_GoF, which was generated by cmd/cgo, unpacks the arguments // from frame, calls p.GoF, writes the results back to frame, and // returns. Now we start unwinding this whole process. // // runtime.cgocallbackg pops but does not execute the deferred // function to unwind m.g0.sched.sp, calls runtime.entersyscall, and // returns to runtime.cgocallback. // // After it regains control, runtime.cgocallback switches back to // m.g0's stack (the pointer is still in m.g0.sched.sp), restores the old // m.g0.sched.sp value from the stack, and returns to crosscall2. // // crosscall2 restores the callee-save registers for gcc and returns // to GoF, which unpacks any result values and returns to f. package runtime import ( "runtime/internal/atomic" "runtime/internal/sys" "unsafe" ) // Addresses collected in a cgo backtrace when crashing. // Length must match arg.Max in x_cgo_callers in runtime/cgo/gcc_traceback.c. type cgoCallers [32]uintptr // argset matches runtime/cgo/linux_syscall.c:argset_t type argset struct { args unsafe.Pointer retval uintptr } // wrapper for syscall package to call cgocall for libc (cgo) calls. //go:linkname syscall_cgocaller syscall.cgocaller //go:nosplit //go:uintptrescapes func syscall_cgocaller(fn unsafe.Pointer, args ...uintptr) uintptr { as := argset{args: unsafe.Pointer(&args[0])} cgocall(fn, unsafe.Pointer(&as)) return as.retval } var ncgocall uint64 // number of cgo calls in total for dead m // Call from Go to C. // // This must be nosplit because it's used for syscalls on some // platforms. Syscalls may have untyped arguments on the stack, so // it's not safe to grow or scan the stack. // //go:nosplit func cgocall(fn, arg unsafe.Pointer) int32 { if !iscgo && GOOS != "solaris" && GOOS != "illumos" && GOOS != "windows" { throw("cgocall unavailable") } if fn == nil { throw("cgocall nil") } if raceenabled { racereleasemerge(unsafe.Pointer(&racecgosync)) } mp := getg().m mp.ncgocall++ mp.ncgo++ // Reset traceback. mp.cgoCallers[0] = 0 // Announce we are entering a system call // so that the scheduler knows to create another // M to run goroutines while we are in the // foreign code. // // The call to asmcgocall is guaranteed not to // grow the stack and does not allocate memory, // so it is safe to call while "in a system call", outside // the $GOMAXPROCS accounting. // // fn may call back into Go code, in which case we'll exit the // "system call", run the Go code (which may grow the stack), // and then re-enter the "system call" reusing the PC and SP // saved by entersyscall here. entersyscall() // Tell asynchronous preemption that we're entering external // code. We do this after entersyscall because this may block // and cause an async preemption to fail, but at this point a // sync preemption will succeed (though this is not a matter // of correctness). osPreemptExtEnter(mp) mp.incgo = true errno := asmcgocall(fn, arg) // Update accounting before exitsyscall because exitsyscall may // reschedule us on to a different M. mp.incgo = false mp.ncgo-- osPreemptExtExit(mp) exitsyscall() // Note that raceacquire must be called only after exitsyscall has // wired this M to a P. if raceenabled { raceacquire(unsafe.Pointer(&racecgosync)) } // From the garbage collector's perspective, time can move // backwards in the sequence above. If there's a callback into // Go code, GC will see this function at the call to // asmcgocall. When the Go call later returns to C, the // syscall PC/SP is rolled back and the GC sees this function // back at the call to entersyscall. Normally, fn and arg // would be live at entersyscall and dead at asmcgocall, so if // time moved backwards, GC would see these arguments as dead // and then live. Prevent these undead arguments from crashing // GC by forcing them to stay live across this time warp. KeepAlive(fn) KeepAlive(arg) KeepAlive(mp) return errno } // Call from C back to Go. fn must point to an ABIInternal Go entry-point. //go:nosplit func cgocallbackg(fn, frame unsafe.Pointer, ctxt uintptr) { gp := getg() if gp != gp.m.curg { println("runtime: bad g in cgocallback") exit(2) } // The call from C is on gp.m's g0 stack, so we must ensure // that we stay on that M. We have to do this before calling // exitsyscall, since it would otherwise be free to move us to // a different M. The call to unlockOSThread is in unwindm. lockOSThread() checkm := gp.m // Save current syscall parameters, so m.syscall can be // used again if callback decide to make syscall. syscall := gp.m.syscall // entersyscall saves the caller's SP to allow the GC to trace the Go // stack. However, since we're returning to an earlier stack frame and // need to pair with the entersyscall() call made by cgocall, we must // save syscall* and let reentersyscall restore them. savedsp := unsafe.Pointer(gp.syscallsp) savedpc := gp.syscallpc exitsyscall() // coming out of cgo call gp.m.incgo = false osPreemptExtExit(gp.m) cgocallbackg1(fn, frame, ctxt) // will call unlockOSThread // At this point unlockOSThread has been called. // The following code must not change to a different m. // This is enforced by checking incgo in the schedule function. gp.m.incgo = true if gp.m != checkm { throw("m changed unexpectedly in cgocallbackg") } osPreemptExtEnter(gp.m) // going back to cgo call reentersyscall(savedpc, uintptr(savedsp)) gp.m.syscall = syscall } func cgocallbackg1(fn, frame unsafe.Pointer, ctxt uintptr) { gp := getg() // When we return, undo the call to lockOSThread in cgocallbackg. // We must still stay on the same m. defer unlockOSThread() if gp.m.needextram || atomic.Load(&extraMWaiters) > 0 { gp.m.needextram = false systemstack(newextram) } if ctxt != 0 { s := append(gp.cgoCtxt, ctxt) // Now we need to set gp.cgoCtxt = s, but we could get // a SIGPROF signal while manipulating the slice, and // the SIGPROF handler could pick up gp.cgoCtxt while // tracing up the stack. We need to ensure that the // handler always sees a valid slice, so set the // values in an order such that it always does. p := (*slice)(unsafe.Pointer(&gp.cgoCtxt)) atomicstorep(unsafe.Pointer(&p.array), unsafe.Pointer(&s[0])) p.cap = cap(s) p.len = len(s) defer func(gp *g) { // Decrease the length of the slice by one, safely. p := (*slice)(unsafe.Pointer(&gp.cgoCtxt)) p.len-- }(gp) } if gp.m.ncgo == 0 { // The C call to Go came from a thread not currently running // any Go. In the case of -buildmode=c-archive or c-shared, // this call may be coming in before package initialization // is complete. Wait until it is. <-main_init_done } // Add entry to defer stack in case of panic. restore := true defer unwindm(&restore) if raceenabled { raceacquire(unsafe.Pointer(&racecgosync)) } // Invoke callback. This function is generated by cmd/cgo and // will unpack the argument frame and call the Go function. var cb func(frame unsafe.Pointer) cbFV := funcval{uintptr(fn)} *(*unsafe.Pointer)(unsafe.Pointer(&cb)) = noescape(unsafe.Pointer(&cbFV)) cb(frame) if raceenabled { racereleasemerge(unsafe.Pointer(&racecgosync)) } // Do not unwind m->g0->sched.sp. // Our caller, cgocallback, will do that. restore = false } func unwindm(restore *bool) { if *restore { // Restore sp saved by cgocallback during // unwind of g's stack (see comment at top of file). mp := acquirem() sched := &mp.g0.sched sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + alignUp(sys.MinFrameSize, sys.StackAlign))) // Do the accounting that cgocall will not have a chance to do // during an unwind. // // In the case where a Go call originates from C, ncgo is 0 // and there is no matching cgocall to end. if mp.ncgo > 0 { mp.incgo = false mp.ncgo-- osPreemptExtExit(mp) } releasem(mp) } } // called from assembly func badcgocallback() { throw("misaligned stack in cgocallback") } // called from (incomplete) assembly func cgounimpl() { throw("cgo not implemented") } var racecgosync uint64 // represents possible synchronization in C code // Pointer checking for cgo code. // We want to detect all cases where a program that does not use // unsafe makes a cgo call passing a Go pointer to memory that // contains a Go pointer. Here a Go pointer is defined as a pointer // to memory allocated by the Go runtime. Programs that use unsafe // can evade this restriction easily, so we don't try to catch them. // The cgo program will rewrite all possibly bad pointer arguments to // call cgoCheckPointer, where we can catch cases of a Go pointer // pointing to a Go pointer. // Complicating matters, taking the address of a slice or array // element permits the C program to access all elements of the slice // or array. In that case we will see a pointer to a single element, // but we need to check the entire data structure. // The cgoCheckPointer call takes additional arguments indicating that // it was called on an address expression. An additional argument of // true means that it only needs to check a single element. An // additional argument of a slice or array means that it needs to // check the entire slice/array, but nothing else. Otherwise, the // pointer could be anything, and we check the entire heap object, // which is conservative but safe. // When and if we implement a moving garbage collector, // cgoCheckPointer will pin the pointer for the duration of the cgo // call. (This is necessary but not sufficient; the cgo program will // also have to change to pin Go pointers that cannot point to Go // pointers.) // cgoCheckPointer checks if the argument contains a Go pointer that // points to a Go pointer, and panics if it does. func cgoCheckPointer(ptr interface{}, arg interface{}) { if debug.cgocheck == 0 { return } ep := efaceOf(&ptr) t := ep._type top := true if arg != nil && (t.kind&kindMask == kindPtr || t.kind&kindMask == kindUnsafePointer) { p := ep.data if t.kind&kindDirectIface == 0 { p = *(*unsafe.Pointer)(p) } if p == nil || !cgoIsGoPointer(p) { return } aep := efaceOf(&arg) switch aep._type.kind & kindMask { case kindBool: if t.kind&kindMask == kindUnsafePointer { // We don't know the type of the element. break } pt := (*ptrtype)(unsafe.Pointer(t)) cgoCheckArg(pt.elem, p, true, false, cgoCheckPointerFail) return case kindSlice: // Check the slice rather than the pointer. ep = aep t = ep._type case kindArray: // Check the array rather than the pointer. // Pass top as false since we have a pointer // to the array. ep = aep t = ep._type top = false default: throw("can't happen") } } cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, top, cgoCheckPointerFail) } const cgoCheckPointerFail = "cgo argument has Go pointer to Go pointer" const cgoResultFail = "cgo result has Go pointer" // cgoCheckArg is the real work of cgoCheckPointer. The argument p // is either a pointer to the value (of type t), or the value itself, // depending on indir. The top parameter is whether we are at the top // level, where Go pointers are allowed. func cgoCheckArg(t *_type, p unsafe.Pointer, indir, top bool, msg string) { if t.ptrdata == 0 || p == nil { // If the type has no pointers there is nothing to do. return } switch t.kind & kindMask { default: throw("can't happen") case kindArray: at := (*arraytype)(unsafe.Pointer(t)) if !indir { if at.len != 1 { throw("can't happen") } cgoCheckArg(at.elem, p, at.elem.kind&kindDirectIface == 0, top, msg) return } for i := uintptr(0); i < at.len; i++ { cgoCheckArg(at.elem, p, true, top, msg) p = add(p, at.elem.size) } case kindChan, kindMap: // These types contain internal pointers that will // always be allocated in the Go heap. It's never OK // to pass them to C. panic(errorString(msg)) case kindFunc: if indir { p = *(*unsafe.Pointer)(p) } if !cgoIsGoPointer(p) { return } panic(errorString(msg)) case kindInterface: it := *(**_type)(p) if it == nil { return } // A type known at compile time is OK since it's // constant. A type not known at compile time will be // in the heap and will not be OK. if inheap(uintptr(unsafe.Pointer(it))) { panic(errorString(msg)) } p = *(*unsafe.Pointer)(add(p, sys.PtrSize)) if !cgoIsGoPointer(p) { return } if !top { panic(errorString(msg)) } cgoCheckArg(it, p, it.kind&kindDirectIface == 0, false, msg) case kindSlice: st := (*slicetype)(unsafe.Pointer(t)) s := (*slice)(p) p = s.array if p == nil || !cgoIsGoPointer(p) { return } if !top { panic(errorString(msg)) } if st.elem.ptrdata == 0 { return } for i := 0; i < s.cap; i++ { cgoCheckArg(st.elem, p, true, false, msg) p = add(p, st.elem.size) } case kindString: ss := (*stringStruct)(p) if !cgoIsGoPointer(ss.str) { return } if !top { panic(errorString(msg)) } case kindStruct: st := (*structtype)(unsafe.Pointer(t)) if !indir { if len(st.fields) != 1 { throw("can't happen") } cgoCheckArg(st.fields[0].typ, p, st.fields[0].typ.kind&kindDirectIface == 0, top, msg) return } for _, f := range st.fields { if f.typ.ptrdata == 0 { continue } cgoCheckArg(f.typ, add(p, f.offset()), true, top, msg) } case kindPtr, kindUnsafePointer: if indir { p = *(*unsafe.Pointer)(p) if p == nil { return } } if !cgoIsGoPointer(p) { return } if !top { panic(errorString(msg)) } cgoCheckUnknownPointer(p, msg) } } // cgoCheckUnknownPointer is called for an arbitrary pointer into Go // memory. It checks whether that Go memory contains any other // pointer into Go memory. If it does, we panic. // The return values are unused but useful to see in panic tracebacks. func cgoCheckUnknownPointer(p unsafe.Pointer, msg string) (base, i uintptr) { if inheap(uintptr(p)) { b, span, _ := findObject(uintptr(p), 0, 0) base = b if base == 0 { return } hbits := heapBitsForAddr(base) n := span.elemsize for i = uintptr(0); i < n; i += sys.PtrSize { if !hbits.morePointers() { // No more possible pointers. break } if hbits.isPointer() && cgoIsGoPointer(*(*unsafe.Pointer)(unsafe.Pointer(base + i))) { panic(errorString(msg)) } hbits = hbits.next() } return } for _, datap := range activeModules() { if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) { // We have no way to know the size of the object. // We have to assume that it might contain a pointer. panic(errorString(msg)) } // In the text or noptr sections, we know that the // pointer does not point to a Go pointer. } return } // cgoIsGoPointer reports whether the pointer is a Go pointer--a // pointer to Go memory. We only care about Go memory that might // contain pointers. //go:nosplit //go:nowritebarrierrec func cgoIsGoPointer(p unsafe.Pointer) bool { if p == nil { return false } if inHeapOrStack(uintptr(p)) { return true } for _, datap := range activeModules() { if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) { return true } } return false } // cgoInRange reports whether p is between start and end. //go:nosplit //go:nowritebarrierrec func cgoInRange(p unsafe.Pointer, start, end uintptr) bool { return start <= uintptr(p) && uintptr(p) < end } // cgoCheckResult is called to check the result parameter of an // exported Go function. It panics if the result is or contains a Go // pointer. func cgoCheckResult(val interface{}) { if debug.cgocheck == 0 { return } ep := efaceOf(&val) t := ep._type cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, false, cgoResultFail) }