// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Garbage collector: type and heap bitmaps. // // Stack, data, and bss bitmaps // // Stack frames and global variables in the data and bss sections are // described by bitmaps with 1 bit per pointer-sized word. A "1" bit // means the word is a live pointer to be visited by the GC (referred to // as "pointer"). A "0" bit means the word should be ignored by GC // (referred to as "scalar", though it could be a dead pointer value). // // Heap bitmap // // The heap bitmap comprises 2 bits for each pointer-sized word in the heap, // stored in the heapArena metadata backing each heap arena. // That is, if ha is the heapArena for the arena starting a start, // then ha.bitmap[0] holds the 2-bit entries for the four words start // through start+3*ptrSize, ha.bitmap[1] holds the entries for // start+4*ptrSize through start+7*ptrSize, and so on. // // In each 2-bit entry, the lower bit is a pointer/scalar bit, just // like in the stack/data bitmaps described above. The upper bit // indicates scan/dead: a "1" value ("scan") indicates that there may // be pointers in later words of the allocation, and a "0" value // ("dead") indicates there are no more pointers in the allocation. If // the upper bit is 0, the lower bit must also be 0, and this // indicates scanning can ignore the rest of the allocation. // // The 2-bit entries are split when written into the byte, so that the top half // of the byte contains 4 high (scan) bits and the bottom half contains 4 low // (pointer) bits. This form allows a copy from the 1-bit to the 4-bit form to // keep the pointer bits contiguous, instead of having to space them out. // // The code makes use of the fact that the zero value for a heap // bitmap means scalar/dead. This property must be preserved when // modifying the encoding. // // The bitmap for noscan spans is not maintained. Code must ensure // that an object is scannable before consulting its bitmap by // checking either the noscan bit in the span or by consulting its // type's information. package runtime import ( "runtime/internal/atomic" "runtime/internal/sys" "unsafe" ) const ( bitPointer = 1 << 0 bitScan = 1 << 4 heapBitsShift = 1 // shift offset between successive bitPointer or bitScan entries wordsPerBitmapByte = 8 / 2 // heap words described by one bitmap byte // all scan/pointer bits in a byte bitScanAll = bitScan | bitScan< snelems { throw("s.freeindex > s.nelems") } aCache := s.allocCache bitIndex := sys.Ctz64(aCache) for bitIndex == 64 { // Move index to start of next cached bits. sfreeindex = (sfreeindex + 64) &^ (64 - 1) if sfreeindex >= snelems { s.freeindex = snelems return snelems } whichByte := sfreeindex / 8 // Refill s.allocCache with the next 64 alloc bits. s.refillAllocCache(whichByte) aCache = s.allocCache bitIndex = sys.Ctz64(aCache) // nothing available in cached bits // grab the next 8 bytes and try again. } result := sfreeindex + uintptr(bitIndex) if result >= snelems { s.freeindex = snelems return snelems } s.allocCache >>= uint(bitIndex + 1) sfreeindex = result + 1 if sfreeindex%64 == 0 && sfreeindex != snelems { // We just incremented s.freeindex so it isn't 0. // As each 1 in s.allocCache was encountered and used for allocation // it was shifted away. At this point s.allocCache contains all 0s. // Refill s.allocCache so that it corresponds // to the bits at s.allocBits starting at s.freeindex. whichByte := sfreeindex / 8 s.refillAllocCache(whichByte) } s.freeindex = sfreeindex return result } // isFree reports whether the index'th object in s is unallocated. // // The caller must ensure s.state is mSpanInUse, and there must have // been no preemption points since ensuring this (which could allow a // GC transition, which would allow the state to change). func (s *mspan) isFree(index uintptr) bool { if index < s.freeindex { return false } bytep, mask := s.allocBits.bitp(index) return *bytep&mask == 0 } // divideByElemSize returns n/s.elemsize. // n must be within [0, s.npages*_PageSize), // or may be exactly s.npages*_PageSize // if s.elemsize is from sizeclasses.go. func (s *mspan) divideByElemSize(n uintptr) uintptr { const doubleCheck = false // See explanation in mksizeclasses.go's computeDivMagic. q := uintptr((uint64(n) * uint64(s.divMul)) >> 32) if doubleCheck && q != n/s.elemsize { println(n, "/", s.elemsize, "should be", n/s.elemsize, "but got", q) throw("bad magic division") } return q } func (s *mspan) objIndex(p uintptr) uintptr { return s.divideByElemSize(p - s.base()) } func markBitsForAddr(p uintptr) markBits { s := spanOf(p) objIndex := s.objIndex(p) return s.markBitsForIndex(objIndex) } func (s *mspan) markBitsForIndex(objIndex uintptr) markBits { bytep, mask := s.gcmarkBits.bitp(objIndex) return markBits{bytep, mask, objIndex} } func (s *mspan) markBitsForBase() markBits { return markBits{(*uint8)(s.gcmarkBits), uint8(1), 0} } // isMarked reports whether mark bit m is set. func (m markBits) isMarked() bool { return *m.bytep&m.mask != 0 } // setMarked sets the marked bit in the markbits, atomically. func (m markBits) setMarked() { // Might be racing with other updates, so use atomic update always. // We used to be clever here and use a non-atomic update in certain // cases, but it's not worth the risk. atomic.Or8(m.bytep, m.mask) } // setMarkedNonAtomic sets the marked bit in the markbits, non-atomically. func (m markBits) setMarkedNonAtomic() { *m.bytep |= m.mask } // clearMarked clears the marked bit in the markbits, atomically. func (m markBits) clearMarked() { // Might be racing with other updates, so use atomic update always. // We used to be clever here and use a non-atomic update in certain // cases, but it's not worth the risk. atomic.And8(m.bytep, ^m.mask) } // markBitsForSpan returns the markBits for the span base address base. func markBitsForSpan(base uintptr) (mbits markBits) { mbits = markBitsForAddr(base) if mbits.mask != 1 { throw("markBitsForSpan: unaligned start") } return mbits } // advance advances the markBits to the next object in the span. func (m *markBits) advance() { if m.mask == 1<<7 { m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1)) m.mask = 1 } else { m.mask = m.mask << 1 } m.index++ } // heapBitsForAddr returns the heapBits for the address addr. // The caller must ensure addr is in an allocated span. // In particular, be careful not to point past the end of an object. // // nosplit because it is used during write barriers and must not be preempted. //go:nosplit func heapBitsForAddr(addr uintptr) (h heapBits) { // 2 bits per word, 4 pairs per byte, and a mask is hard coded. arena := arenaIndex(addr) ha := mheap_.arenas[arena.l1()][arena.l2()] // The compiler uses a load for nil checking ha, but in this // case we'll almost never hit that cache line again, so it // makes more sense to do a value check. if ha == nil { // addr is not in the heap. Return nil heapBits, which // we expect to crash in the caller. return } h.bitp = &ha.bitmap[(addr/(sys.PtrSize*4))%heapArenaBitmapBytes] h.shift = uint32((addr / sys.PtrSize) & 3) h.arena = uint32(arena) h.last = &ha.bitmap[len(ha.bitmap)-1] return } // clobberdeadPtr is a special value that is used by the compiler to // clobber dead stack slots, when -clobberdead flag is set. const clobberdeadPtr = uintptr(0xdeaddead | 0xdeaddead<<((^uintptr(0)>>63)*32)) // badPointer throws bad pointer in heap panic. func badPointer(s *mspan, p, refBase, refOff uintptr) { // Typically this indicates an incorrect use // of unsafe or cgo to store a bad pointer in // the Go heap. It may also indicate a runtime // bug. // // TODO(austin): We could be more aggressive // and detect pointers to unallocated objects // in allocated spans. printlock() print("runtime: pointer ", hex(p)) if s != nil { state := s.state.get() if state != mSpanInUse { print(" to unallocated span") } else { print(" to unused region of span") } print(" span.base()=", hex(s.base()), " span.limit=", hex(s.limit), " span.state=", state) } print("\n") if refBase != 0 { print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n") gcDumpObject("object", refBase, refOff) } getg().m.traceback = 2 throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)") } // findObject returns the base address for the heap object containing // the address p, the object's span, and the index of the object in s. // If p does not point into a heap object, it returns base == 0. // // If p points is an invalid heap pointer and debug.invalidptr != 0, // findObject panics. // // refBase and refOff optionally give the base address of the object // in which the pointer p was found and the byte offset at which it // was found. These are used for error reporting. // // It is nosplit so it is safe for p to be a pointer to the current goroutine's stack. // Since p is a uintptr, it would not be adjusted if the stack were to move. //go:nosplit func findObject(p, refBase, refOff uintptr) (base uintptr, s *mspan, objIndex uintptr) { s = spanOf(p) // If s is nil, the virtual address has never been part of the heap. // This pointer may be to some mmap'd region, so we allow it. if s == nil { if GOARCH == "amd64" && p == clobberdeadPtr && debug.invalidptr != 0 { // Crash if clobberdeadPtr is seen. Only on AMD64 for now, as // it is the only platform where compiler's clobberdead mode is // implemented. On AMD64 clobberdeadPtr cannot be a valid address. badPointer(s, p, refBase, refOff) } return } // If p is a bad pointer, it may not be in s's bounds. // // Check s.state to synchronize with span initialization // before checking other fields. See also spanOfHeap. if state := s.state.get(); state != mSpanInUse || p < s.base() || p >= s.limit { // Pointers into stacks are also ok, the runtime manages these explicitly. if state == mSpanManual { return } // The following ensures that we are rigorous about what data // structures hold valid pointers. if debug.invalidptr != 0 { badPointer(s, p, refBase, refOff) } return } objIndex = s.objIndex(p) base = s.base() + objIndex*s.elemsize return } // next returns the heapBits describing the next pointer-sized word in memory. // That is, if h describes address p, h.next() describes p+ptrSize. // Note that next does not modify h. The caller must record the result. // // nosplit because it is used during write barriers and must not be preempted. //go:nosplit func (h heapBits) next() heapBits { if h.shift < 3*heapBitsShift { h.shift += heapBitsShift } else if h.bitp != h.last { h.bitp, h.shift = add1(h.bitp), 0 } else { // Move to the next arena. return h.nextArena() } return h } // nextArena advances h to the beginning of the next heap arena. // // This is a slow-path helper to next. gc's inliner knows that // heapBits.next can be inlined even though it calls this. This is // marked noinline so it doesn't get inlined into next and cause next // to be too big to inline. // //go:nosplit //go:noinline func (h heapBits) nextArena() heapBits { h.arena++ ai := arenaIdx(h.arena) l2 := mheap_.arenas[ai.l1()] if l2 == nil { // We just passed the end of the object, which // was also the end of the heap. Poison h. It // should never be dereferenced at this point. return heapBits{} } ha := l2[ai.l2()] if ha == nil { return heapBits{} } h.bitp, h.shift = &ha.bitmap[0], 0 h.last = &ha.bitmap[len(ha.bitmap)-1] return h } // forward returns the heapBits describing n pointer-sized words ahead of h in memory. // That is, if h describes address p, h.forward(n) describes p+n*ptrSize. // h.forward(1) is equivalent to h.next(), just slower. // Note that forward does not modify h. The caller must record the result. // bits returns the heap bits for the current word. //go:nosplit func (h heapBits) forward(n uintptr) heapBits { n += uintptr(h.shift) / heapBitsShift nbitp := uintptr(unsafe.Pointer(h.bitp)) + n/4 h.shift = uint32(n%4) * heapBitsShift if nbitp <= uintptr(unsafe.Pointer(h.last)) { h.bitp = (*uint8)(unsafe.Pointer(nbitp)) return h } // We're in a new heap arena. past := nbitp - (uintptr(unsafe.Pointer(h.last)) + 1) h.arena += 1 + uint32(past/heapArenaBitmapBytes) ai := arenaIdx(h.arena) if l2 := mheap_.arenas[ai.l1()]; l2 != nil && l2[ai.l2()] != nil { a := l2[ai.l2()] h.bitp = &a.bitmap[past%heapArenaBitmapBytes] h.last = &a.bitmap[len(a.bitmap)-1] } else { h.bitp, h.last = nil, nil } return h } // forwardOrBoundary is like forward, but stops at boundaries between // contiguous sections of the bitmap. It returns the number of words // advanced over, which will be <= n. func (h heapBits) forwardOrBoundary(n uintptr) (heapBits, uintptr) { maxn := 4 * ((uintptr(unsafe.Pointer(h.last)) + 1) - uintptr(unsafe.Pointer(h.bitp))) if n > maxn { n = maxn } return h.forward(n), n } // The caller can test morePointers and isPointer by &-ing with bitScan and bitPointer. // The result includes in its higher bits the bits for subsequent words // described by the same bitmap byte. // // nosplit because it is used during write barriers and must not be preempted. //go:nosplit func (h heapBits) bits() uint32 { // The (shift & 31) eliminates a test and conditional branch // from the generated code. return uint32(*h.bitp) >> (h.shift & 31) } // morePointers reports whether this word and all remaining words in this object // are scalars. // h must not describe the second word of the object. func (h heapBits) morePointers() bool { return h.bits()&bitScan != 0 } // isPointer reports whether the heap bits describe a pointer word. // // nosplit because it is used during write barriers and must not be preempted. //go:nosplit func (h heapBits) isPointer() bool { return h.bits()&bitPointer != 0 } // bulkBarrierPreWrite executes a write barrier // for every pointer slot in the memory range [src, src+size), // using pointer/scalar information from [dst, dst+size). // This executes the write barriers necessary before a memmove. // src, dst, and size must be pointer-aligned. // The range [dst, dst+size) must lie within a single object. // It does not perform the actual writes. // // As a special case, src == 0 indicates that this is being used for a // memclr. bulkBarrierPreWrite will pass 0 for the src of each write // barrier. // // Callers should call bulkBarrierPreWrite immediately before // calling memmove(dst, src, size). This function is marked nosplit // to avoid being preempted; the GC must not stop the goroutine // between the memmove and the execution of the barriers. // The caller is also responsible for cgo pointer checks if this // may be writing Go pointers into non-Go memory. // // The pointer bitmap is not maintained for allocations containing // no pointers at all; any caller of bulkBarrierPreWrite must first // make sure the underlying allocation contains pointers, usually // by checking typ.ptrdata. // // Callers must perform cgo checks if writeBarrier.cgo. // //go:nosplit func bulkBarrierPreWrite(dst, src, size uintptr) { if (dst|src|size)&(sys.PtrSize-1) != 0 { throw("bulkBarrierPreWrite: unaligned arguments") } if !writeBarrier.needed { return } if s := spanOf(dst); s == nil { // If dst is a global, use the data or BSS bitmaps to // execute write barriers. for _, datap := range activeModules() { if datap.data <= dst && dst < datap.edata { bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata) return } } for _, datap := range activeModules() { if datap.bss <= dst && dst < datap.ebss { bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata) return } } return } else if s.state.get() != mSpanInUse || dst < s.base() || s.limit <= dst { // dst was heap memory at some point, but isn't now. // It can't be a global. It must be either our stack, // or in the case of direct channel sends, it could be // another stack. Either way, no need for barriers. // This will also catch if dst is in a freed span, // though that should never have. return } buf := &getg().m.p.ptr().wbBuf h := heapBitsForAddr(dst) if src == 0 { for i := uintptr(0); i < size; i += sys.PtrSize { if h.isPointer() { dstx := (*uintptr)(unsafe.Pointer(dst + i)) if !buf.putFast(*dstx, 0) { wbBufFlush(nil, 0) } } h = h.next() } } else { for i := uintptr(0); i < size; i += sys.PtrSize { if h.isPointer() { dstx := (*uintptr)(unsafe.Pointer(dst + i)) srcx := (*uintptr)(unsafe.Pointer(src + i)) if !buf.putFast(*dstx, *srcx) { wbBufFlush(nil, 0) } } h = h.next() } } } // bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but // does not execute write barriers for [dst, dst+size). // // In addition to the requirements of bulkBarrierPreWrite // callers need to ensure [dst, dst+size) is zeroed. // // This is used for special cases where e.g. dst was just // created and zeroed with malloc. //go:nosplit func bulkBarrierPreWriteSrcOnly(dst, src, size uintptr) { if (dst|src|size)&(sys.PtrSize-1) != 0 { throw("bulkBarrierPreWrite: unaligned arguments") } if !writeBarrier.needed { return } buf := &getg().m.p.ptr().wbBuf h := heapBitsForAddr(dst) for i := uintptr(0); i < size; i += sys.PtrSize { if h.isPointer() { srcx := (*uintptr)(unsafe.Pointer(src + i)) if !buf.putFast(0, *srcx) { wbBufFlush(nil, 0) } } h = h.next() } } // bulkBarrierBitmap executes write barriers for copying from [src, // src+size) to [dst, dst+size) using a 1-bit pointer bitmap. src is // assumed to start maskOffset bytes into the data covered by the // bitmap in bits (which may not be a multiple of 8). // // This is used by bulkBarrierPreWrite for writes to data and BSS. // //go:nosplit func bulkBarrierBitmap(dst, src, size, maskOffset uintptr, bits *uint8) { word := maskOffset / sys.PtrSize bits = addb(bits, word/8) mask := uint8(1) << (word % 8) buf := &getg().m.p.ptr().wbBuf for i := uintptr(0); i < size; i += sys.PtrSize { if mask == 0 { bits = addb(bits, 1) if *bits == 0 { // Skip 8 words. i += 7 * sys.PtrSize continue } mask = 1 } if *bits&mask != 0 { dstx := (*uintptr)(unsafe.Pointer(dst + i)) if src == 0 { if !buf.putFast(*dstx, 0) { wbBufFlush(nil, 0) } } else { srcx := (*uintptr)(unsafe.Pointer(src + i)) if !buf.putFast(*dstx, *srcx) { wbBufFlush(nil, 0) } } } mask <<= 1 } } // typeBitsBulkBarrier executes a write barrier for every // pointer that would be copied from [src, src+size) to [dst, // dst+size) by a memmove using the type bitmap to locate those // pointer slots. // // The type typ must correspond exactly to [src, src+size) and [dst, dst+size). // dst, src, and size must be pointer-aligned. // The type typ must have a plain bitmap, not a GC program. // The only use of this function is in channel sends, and the // 64 kB channel element limit takes care of this for us. // // Must not be preempted because it typically runs right before memmove, // and the GC must observe them as an atomic action. // // Callers must perform cgo checks if writeBarrier.cgo. // //go:nosplit func typeBitsBulkBarrier(typ *_type, dst, src, size uintptr) { if typ == nil { throw("runtime: typeBitsBulkBarrier without type") } if typ.size != size { println("runtime: typeBitsBulkBarrier with type ", typ.string(), " of size ", typ.size, " but memory size", size) throw("runtime: invalid typeBitsBulkBarrier") } if typ.kind&kindGCProg != 0 { println("runtime: typeBitsBulkBarrier with type ", typ.string(), " with GC prog") throw("runtime: invalid typeBitsBulkBarrier") } if !writeBarrier.needed { return } ptrmask := typ.gcdata buf := &getg().m.p.ptr().wbBuf var bits uint32 for i := uintptr(0); i < typ.ptrdata; i += sys.PtrSize { if i&(sys.PtrSize*8-1) == 0 { bits = uint32(*ptrmask) ptrmask = addb(ptrmask, 1) } else { bits = bits >> 1 } if bits&1 != 0 { dstx := (*uintptr)(unsafe.Pointer(dst + i)) srcx := (*uintptr)(unsafe.Pointer(src + i)) if !buf.putFast(*dstx, *srcx) { wbBufFlush(nil, 0) } } } } // The methods operating on spans all require that h has been returned // by heapBitsForSpan and that size, n, total are the span layout description // returned by the mspan's layout method. // If total > size*n, it means that there is extra leftover memory in the span, // usually due to rounding. // // TODO(rsc): Perhaps introduce a different heapBitsSpan type. // initSpan initializes the heap bitmap for a span. // If this is a span of pointer-sized objects, it initializes all // words to pointer/scan. // Otherwise, it initializes all words to scalar/dead. func (h heapBits) initSpan(s *mspan) { // Clear bits corresponding to objects. nw := (s.npages << _PageShift) / sys.PtrSize if nw%wordsPerBitmapByte != 0 { throw("initSpan: unaligned length") } if h.shift != 0 { throw("initSpan: unaligned base") } isPtrs := sys.PtrSize == 8 && s.elemsize == sys.PtrSize for nw > 0 { hNext, anw := h.forwardOrBoundary(nw) nbyte := anw / wordsPerBitmapByte if isPtrs { bitp := h.bitp for i := uintptr(0); i < nbyte; i++ { *bitp = bitPointerAll | bitScanAll bitp = add1(bitp) } } else { memclrNoHeapPointers(unsafe.Pointer(h.bitp), nbyte) } h = hNext nw -= anw } } // countAlloc returns the number of objects allocated in span s by // scanning the allocation bitmap. func (s *mspan) countAlloc() int { count := 0 bytes := divRoundUp(s.nelems, 8) // Iterate over each 8-byte chunk and count allocations // with an intrinsic. Note that newMarkBits guarantees that // gcmarkBits will be 8-byte aligned, so we don't have to // worry about edge cases, irrelevant bits will simply be zero. for i := uintptr(0); i < bytes; i += 8 { // Extract 64 bits from the byte pointer and get a OnesCount. // Note that the unsafe cast here doesn't preserve endianness, // but that's OK. We only care about how many bits are 1, not // about the order we discover them in. mrkBits := *(*uint64)(unsafe.Pointer(s.gcmarkBits.bytep(i))) count += sys.OnesCount64(mrkBits) } return count } // heapBitsSetType records that the new allocation [x, x+size) // holds in [x, x+dataSize) one or more values of type typ. // (The number of values is given by dataSize / typ.size.) // If dataSize < size, the fragment [x+dataSize, x+size) is // recorded as non-pointer data. // It is known that the type has pointers somewhere; // malloc does not call heapBitsSetType when there are no pointers, // because all free objects are marked as noscan during // heapBitsSweepSpan. // // There can only be one allocation from a given span active at a time, // and the bitmap for a span always falls on byte boundaries, // so there are no write-write races for access to the heap bitmap. // Hence, heapBitsSetType can access the bitmap without atomics. // // There can be read-write races between heapBitsSetType and things // that read the heap bitmap like scanobject. However, since // heapBitsSetType is only used for objects that have not yet been // made reachable, readers will ignore bits being modified by this // function. This does mean this function cannot transiently modify // bits that belong to neighboring objects. Also, on weakly-ordered // machines, callers must execute a store/store (publication) barrier // between calling this function and making the object reachable. func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { const doubleCheck = false // slow but helpful; enable to test modifications to this code const ( mask1 = bitPointer | bitScan // 00010001 mask2 = bitPointer | bitScan | mask1<> 1 // For h.shift > 1 heap bits cross a byte boundary and need to be written part // to h.bitp and part to the next h.bitp. switch h.shift { case 0: *h.bitp &^= mask3 << 0 *h.bitp |= hb << 0 case 1: *h.bitp &^= mask3 << 1 *h.bitp |= hb << 1 case 2: *h.bitp &^= mask2 << 2 *h.bitp |= (hb & mask2) << 2 // Two words written to the first byte. // Advance two words to get to the next byte. h = h.next().next() *h.bitp &^= mask1 *h.bitp |= (hb >> 2) & mask1 case 3: *h.bitp &^= mask1 << 3 *h.bitp |= (hb & mask1) << 3 // One word written to the first byte. // Advance one word to get to the next byte. h = h.next() *h.bitp &^= mask2 *h.bitp |= (hb >> 1) & mask2 } return } // Copy from 1-bit ptrmask into 2-bit bitmap. // The basic approach is to use a single uintptr as a bit buffer, // alternating between reloading the buffer and writing bitmap bytes. // In general, one load can supply two bitmap byte writes. // This is a lot of lines of code, but it compiles into relatively few // machine instructions. outOfPlace := false if arenaIndex(x+size-1) != arenaIdx(h.arena) || (doubleCheck && fastrand()%2 == 0) { // This object spans heap arenas, so the bitmap may be // discontiguous. Unroll it into the object instead // and then copy it out. // // In doubleCheck mode, we randomly do this anyway to // stress test the bitmap copying path. outOfPlace = true h.bitp = (*uint8)(unsafe.Pointer(x)) h.last = nil } var ( // Ptrmask input. p *byte // last ptrmask byte read b uintptr // ptrmask bits already loaded nb uintptr // number of bits in b at next read endp *byte // final ptrmask byte to read (then repeat) endnb uintptr // number of valid bits in *endp pbits uintptr // alternate source of bits // Heap bitmap output. w uintptr // words processed nw uintptr // number of words to process hbitp *byte // next heap bitmap byte to write hb uintptr // bits being prepared for *hbitp ) hbitp = h.bitp // Handle GC program. Delayed until this part of the code // so that we can use the same double-checking mechanism // as the 1-bit case. Nothing above could have encountered // GC programs: the cases were all too small. if typ.kind&kindGCProg != 0 { heapBitsSetTypeGCProg(h, typ.ptrdata, typ.size, dataSize, size, addb(typ.gcdata, 4)) if doubleCheck { // Double-check the heap bits written by GC program // by running the GC program to create a 1-bit pointer mask // and then jumping to the double-check code below. // This doesn't catch bugs shared between the 1-bit and 4-bit // GC program execution, but it does catch mistakes specific // to just one of those and bugs in heapBitsSetTypeGCProg's // implementation of arrays. lock(&debugPtrmask.lock) if debugPtrmask.data == nil { debugPtrmask.data = (*byte)(persistentalloc(1<<20, 1, &memstats.other_sys)) } ptrmask = debugPtrmask.data runGCProg(addb(typ.gcdata, 4), nil, ptrmask, 1) } goto Phase4 } // Note about sizes: // // typ.size is the number of words in the object, // and typ.ptrdata is the number of words in the prefix // of the object that contains pointers. That is, the final // typ.size - typ.ptrdata words contain no pointers. // This allows optimization of a common pattern where // an object has a small header followed by a large scalar // buffer. If we know the pointers are over, we don't have // to scan the buffer's heap bitmap at all. // The 1-bit ptrmasks are sized to contain only bits for // the typ.ptrdata prefix, zero padded out to a full byte // of bitmap. This code sets nw (below) so that heap bitmap // bits are only written for the typ.ptrdata prefix; if there is // more room in the allocated object, the next heap bitmap // entry is a 00, indicating that there are no more pointers // to scan. So only the ptrmask for the ptrdata bytes is needed. // // Replicated copies are not as nice: if there is an array of // objects with scalar tails, all but the last tail does have to // be initialized, because there is no way to say "skip forward". // However, because of the possibility of a repeated type with // size not a multiple of 4 pointers (one heap bitmap byte), // the code already must handle the last ptrmask byte specially // by treating it as containing only the bits for endnb pointers, // where endnb <= 4. We represent large scalar tails that must // be expanded in the replication by setting endnb larger than 4. // This will have the effect of reading many bits out of b, // but once the real bits are shifted out, b will supply as many // zero bits as we try to read, which is exactly what we need. p = ptrmask if typ.size < dataSize { // Filling in bits for an array of typ. // Set up for repetition of ptrmask during main loop. // Note that ptrmask describes only a prefix of const maxBits = sys.PtrSize*8 - 7 if typ.ptrdata/sys.PtrSize <= maxBits { // Entire ptrmask fits in uintptr with room for a byte fragment. // Load into pbits and never read from ptrmask again. // This is especially important when the ptrmask has // fewer than 8 bits in it; otherwise the reload in the middle // of the Phase 2 loop would itself need to loop to gather // at least 8 bits. // Accumulate ptrmask into b. // ptrmask is sized to describe only typ.ptrdata, but we record // it as describing typ.size bytes, since all the high bits are zero. nb = typ.ptrdata / sys.PtrSize for i := uintptr(0); i < nb; i += 8 { b |= uintptr(*p) << i p = add1(p) } nb = typ.size / sys.PtrSize // Replicate ptrmask to fill entire pbits uintptr. // Doubling and truncating is fewer steps than // iterating by nb each time. (nb could be 1.) // Since we loaded typ.ptrdata/sys.PtrSize bits // but are pretending to have typ.size/sys.PtrSize, // there might be no replication necessary/possible. pbits = b endnb = nb if nb+nb <= maxBits { for endnb <= sys.PtrSize*8 { pbits |= pbits << endnb endnb += endnb } // Truncate to a multiple of original ptrmask. // Because nb+nb <= maxBits, nb fits in a byte. // Byte division is cheaper than uintptr division. endnb = uintptr(maxBits/byte(nb)) * nb pbits &= 1<= nw { goto Phase3 } *hbitp = uint8(hb) hbitp = add1(hbitp) b >>= 4 nb -= 4 case h.shift == 2: // Ptrmask and heap bitmap are misaligned. // // On 32 bit architectures only the 6-word object that corresponds // to a 24 bytes size class can start with h.shift of 2 here since // all other non 16 byte aligned size classes have been handled by // special code paths at the beginning of heapBitsSetType on 32 bit. // // Many size classes are only 16 byte aligned. On 64 bit architectures // this results in a heap bitmap position starting with a h.shift of 2. // // The bits for the first two words are in a byte shared // with another object, so we must be careful with the bits // already there. // // We took care of 1-word, 2-word, and 3-word objects above, // so this is at least a 6-word object. hb = (b & (bitPointer | bitPointer< 1 { hb |= bitScan << (3 * heapBitsShift) } b >>= 2 nb -= 2 *hbitp &^= uint8((bitPointer | bitScan | ((bitPointer | bitScan) << heapBitsShift)) << (2 * heapBitsShift)) *hbitp |= uint8(hb) hbitp = add1(hbitp) if w += 2; w >= nw { // We know that there is more data, because we handled 2-word and 3-word objects above. // This must be at least a 6-word object. If we're out of pointer words, // mark no scan in next bitmap byte and finish. hb = 0 w += 4 goto Phase3 } } // Phase 2: Full bytes in bitmap, up to but not including write to last byte (full or partial) in bitmap. // The loop computes the bits for that last write but does not execute the write; // it leaves the bits in hb for processing by phase 3. // To avoid repeated adjustment of nb, we subtract out the 4 bits we're going to // use in the first half of the loop right now, and then we only adjust nb explicitly // if the 8 bits used by each iteration isn't balanced by 8 bits loaded mid-loop. nb -= 4 for { // Emit bitmap byte. // b has at least nb+4 bits, with one exception: // if w+4 >= nw, then b has only nw-w bits, // but we'll stop at the break and then truncate // appropriately in Phase 3. hb = b & bitPointerAll hb |= bitScanAll if w += 4; w >= nw { break } *hbitp = uint8(hb) hbitp = add1(hbitp) b >>= 4 // Load more bits. b has nb right now. if p != endp { // Fast path: keep reading from ptrmask. // nb unmodified: we just loaded 8 bits, // and the next iteration will consume 8 bits, // leaving us with the same nb the next time we're here. if nb < 8 { b |= uintptr(*p) << nb p = add1(p) } else { // Reduce the number of bits in b. // This is important if we skipped // over a scalar tail, since nb could // be larger than the bit width of b. nb -= 8 } } else if p == nil { // Almost as fast path: track bit count and refill from pbits. // For short repetitions. if nb < 8 { b |= pbits << nb nb += endnb } nb -= 8 // for next iteration } else { // Slow path: reached end of ptrmask. // Process final partial byte and rewind to start. b |= uintptr(*p) << nb nb += endnb if nb < 8 { b |= uintptr(*ptrmask) << nb p = add1(ptrmask) } else { nb -= 8 p = ptrmask } } // Emit bitmap byte. hb = b & bitPointerAll hb |= bitScanAll if w += 4; w >= nw { break } *hbitp = uint8(hb) hbitp = add1(hbitp) b >>= 4 } Phase3: // Phase 3: Write last byte or partial byte and zero the rest of the bitmap entries. if w > nw { // Counting the 4 entries in hb not yet written to memory, // there are more entries than possible pointer slots. // Discard the excess entries (can't be more than 3). mask := uintptr(1)<<(4-(w-nw)) - 1 hb &= mask | mask<<4 // apply mask to both pointer bits and scan bits } // Change nw from counting possibly-pointer words to total words in allocation. nw = size / sys.PtrSize // Write whole bitmap bytes. // The first is hb, the rest are zero. if w <= nw { *hbitp = uint8(hb) hbitp = add1(hbitp) hb = 0 // for possible final half-byte below for w += 4; w <= nw; w += 4 { *hbitp = 0 hbitp = add1(hbitp) } } // Write final partial bitmap byte if any. // We know w > nw, or else we'd still be in the loop above. // It can be bigger only due to the 4 entries in hb that it counts. // If w == nw+4 then there's nothing left to do: we wrote all nw entries // and can discard the 4 sitting in hb. // But if w == nw+2, we need to write first two in hb. // The byte is shared with the next object, so be careful with // existing bits. if w == nw+2 { *hbitp = *hbitp&^(bitPointer|bitScan|(bitPointer|bitScan)<= 4 { // This loop processes four words at a time, // so round cnw down accordingly. hNext, words := h.forwardOrBoundary(cnw / 4 * 4) // n is the number of bitmap bytes to copy. n := words / 4 memmove(unsafe.Pointer(h.bitp), unsafe.Pointer(src), n) cnw -= words h = hNext src = addb(src, n) } if doubleCheck && h.shift != 0 { print("cnw=", cnw, " h.shift=", h.shift, "\n") throw("bad shift after block copy") } // Handle the last byte if it's shared. if cnw == 2 { *h.bitp = *h.bitp&^(bitPointer|bitScan|(bitPointer|bitScan)< x+size { throw("copy exceeded object size") } if !(cnw == 0 || cnw == 2) { print("x=", x, " size=", size, " cnw=", cnw, "\n") throw("bad number of remaining words") } // Set up hbitp so doubleCheck code below can check it. hbitp = h.bitp } // Zero the object where we wrote the bitmap. memclrNoHeapPointers(unsafe.Pointer(x), uintptr(unsafe.Pointer(src))-x) } // Double check the whole bitmap. if doubleCheck { // x+size may not point to the heap, so back up one // word and then advance it the way we do above. end := heapBitsForAddr(x + size - sys.PtrSize) if outOfPlace { // In out-of-place copying, we just advance // using next. end = end.next() } else { // Don't use next because that may advance to // the next arena and the in-place logic // doesn't do that. end.shift += heapBitsShift if end.shift == 4*heapBitsShift { end.bitp, end.shift = add1(end.bitp), 0 } } if typ.kind&kindGCProg == 0 && (hbitp != end.bitp || (w == nw+2) != (end.shift == 2)) { println("ended at wrong bitmap byte for", typ.string(), "x", dataSize/typ.size) print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n") print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n") h0 := heapBitsForAddr(x) print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n") print("ended at hbitp=", hbitp, " but next starts at bitp=", end.bitp, " shift=", end.shift, "\n") throw("bad heapBitsSetType") } // Double-check that bits to be written were written correctly. // Does not check that other bits were not written, unfortunately. h := heapBitsForAddr(x) nptr := typ.ptrdata / sys.PtrSize ndata := typ.size / sys.PtrSize count := dataSize / typ.size totalptr := ((count-1)*typ.size + typ.ptrdata) / sys.PtrSize for i := uintptr(0); i < size/sys.PtrSize; i++ { j := i % ndata var have, want uint8 have = (*h.bitp >> h.shift) & (bitPointer | bitScan) if i >= totalptr { if typ.kind&kindGCProg != 0 && i < (totalptr+3)/4*4 { // heapBitsSetTypeGCProg always fills // in full nibbles of bitScan. want = bitScan } } else { if j < nptr && (*addb(ptrmask, j/8)>>(j%8))&1 != 0 { want |= bitPointer } want |= bitScan } if have != want { println("mismatch writing bits for", typ.string(), "x", dataSize/typ.size) print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n") print("kindGCProg=", typ.kind&kindGCProg != 0, " outOfPlace=", outOfPlace, "\n") print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n") h0 := heapBitsForAddr(x) print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n") print("current bits h.bitp=", h.bitp, " h.shift=", h.shift, " *h.bitp=", hex(*h.bitp), "\n") print("ptrmask=", ptrmask, " p=", p, " endp=", endp, " endnb=", endnb, " pbits=", hex(pbits), " b=", hex(b), " nb=", nb, "\n") println("at word", i, "offset", i*sys.PtrSize, "have", hex(have), "want", hex(want)) if typ.kind&kindGCProg != 0 { println("GC program:") dumpGCProg(addb(typ.gcdata, 4)) } throw("bad heapBitsSetType") } h = h.next() } if ptrmask == debugPtrmask.data { unlock(&debugPtrmask.lock) } } } var debugPtrmask struct { lock mutex data *byte } // heapBitsSetTypeGCProg implements heapBitsSetType using a GC program. // progSize is the size of the memory described by the program. // elemSize is the size of the element that the GC program describes (a prefix of). // dataSize is the total size of the intended data, a multiple of elemSize. // allocSize is the total size of the allocated memory. // // GC programs are only used for large allocations. // heapBitsSetType requires that allocSize is a multiple of 4 words, // so that the relevant bitmap bytes are not shared with surrounding // objects. func heapBitsSetTypeGCProg(h heapBits, progSize, elemSize, dataSize, allocSize uintptr, prog *byte) { if sys.PtrSize == 8 && allocSize%(4*sys.PtrSize) != 0 { // Alignment will be wrong. throw("heapBitsSetTypeGCProg: small allocation") } var totalBits uintptr if elemSize == dataSize { totalBits = runGCProg(prog, nil, h.bitp, 2) if totalBits*sys.PtrSize != progSize { println("runtime: heapBitsSetTypeGCProg: total bits", totalBits, "but progSize", progSize) throw("heapBitsSetTypeGCProg: unexpected bit count") } } else { count := dataSize / elemSize // Piece together program trailer to run after prog that does: // literal(0) // repeat(1, elemSize-progSize-1) // zeros to fill element size // repeat(elemSize, count-1) // repeat that element for count // This zero-pads the data remaining in the first element and then // repeats that first element to fill the array. var trailer [40]byte // 3 varints (max 10 each) + some bytes i := 0 if n := elemSize/sys.PtrSize - progSize/sys.PtrSize; n > 0 { // literal(0) trailer[i] = 0x01 i++ trailer[i] = 0 i++ if n > 1 { // repeat(1, n-1) trailer[i] = 0x81 i++ n-- for ; n >= 0x80; n >>= 7 { trailer[i] = byte(n | 0x80) i++ } trailer[i] = byte(n) i++ } } // repeat(elemSize/ptrSize, count-1) trailer[i] = 0x80 i++ n := elemSize / sys.PtrSize for ; n >= 0x80; n >>= 7 { trailer[i] = byte(n | 0x80) i++ } trailer[i] = byte(n) i++ n = count - 1 for ; n >= 0x80; n >>= 7 { trailer[i] = byte(n | 0x80) i++ } trailer[i] = byte(n) i++ trailer[i] = 0 i++ runGCProg(prog, &trailer[0], h.bitp, 2) // Even though we filled in the full array just now, // record that we only filled in up to the ptrdata of the // last element. This will cause the code below to // memclr the dead section of the final array element, // so that scanobject can stop early in the final element. totalBits = (elemSize*(count-1) + progSize) / sys.PtrSize } endProg := unsafe.Pointer(addb(h.bitp, (totalBits+3)/4)) endAlloc := unsafe.Pointer(addb(h.bitp, allocSize/sys.PtrSize/wordsPerBitmapByte)) memclrNoHeapPointers(endProg, uintptr(endAlloc)-uintptr(endProg)) } // progToPointerMask returns the 1-bit pointer mask output by the GC program prog. // size the size of the region described by prog, in bytes. // The resulting bitvector will have no more than size/sys.PtrSize bits. func progToPointerMask(prog *byte, size uintptr) bitvector { n := (size/sys.PtrSize + 7) / 8 x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1] x[len(x)-1] = 0xa1 // overflow check sentinel n = runGCProg(prog, nil, &x[0], 1) if x[len(x)-1] != 0xa1 { throw("progToPointerMask: overflow") } return bitvector{int32(n), &x[0]} } // Packed GC pointer bitmaps, aka GC programs. // // For large types containing arrays, the type information has a // natural repetition that can be encoded to save space in the // binary and in the memory representation of the type information. // // The encoding is a simple Lempel-Ziv style bytecode machine // with the following instructions: // // 00000000: stop // 0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes // 10000000 n c: repeat the previous n bits c times; n, c are varints // 1nnnnnnn c: repeat the previous n bits c times; c is a varint // runGCProg executes the GC program prog, and then trailer if non-nil, // writing to dst with entries of the given size. // If size == 1, dst is a 1-bit pointer mask laid out moving forward from dst. // If size == 2, dst is the 2-bit heap bitmap, and writes move backward // starting at dst (because the heap bitmap does). In this case, the caller guarantees // that only whole bytes in dst need to be written. // // runGCProg returns the number of 1- or 2-bit entries written to memory. func runGCProg(prog, trailer, dst *byte, size int) uintptr { dstStart := dst // Bits waiting to be written to memory. var bits uintptr var nbits uintptr p := prog Run: for { // Flush accumulated full bytes. // The rest of the loop assumes that nbits <= 7. for ; nbits >= 8; nbits -= 8 { if size == 1 { *dst = uint8(bits) dst = add1(dst) bits >>= 8 } else { v := bits&bitPointerAll | bitScanAll *dst = uint8(v) dst = add1(dst) bits >>= 4 v = bits&bitPointerAll | bitScanAll *dst = uint8(v) dst = add1(dst) bits >>= 4 } } // Process one instruction. inst := uintptr(*p) p = add1(p) n := inst & 0x7F if inst&0x80 == 0 { // Literal bits; n == 0 means end of program. if n == 0 { // Program is over; continue in trailer if present. if trailer != nil { p = trailer trailer = nil continue } break Run } nbyte := n / 8 for i := uintptr(0); i < nbyte; i++ { bits |= uintptr(*p) << nbits p = add1(p) if size == 1 { *dst = uint8(bits) dst = add1(dst) bits >>= 8 } else { v := bits&0xf | bitScanAll *dst = uint8(v) dst = add1(dst) bits >>= 4 v = bits&0xf | bitScanAll *dst = uint8(v) dst = add1(dst) bits >>= 4 } } if n %= 8; n > 0 { bits |= uintptr(*p) << nbits p = add1(p) nbits += n } continue Run } // Repeat. If n == 0, it is encoded in a varint in the next bytes. if n == 0 { for off := uint(0); ; off += 7 { x := uintptr(*p) p = add1(p) n |= (x & 0x7F) << off if x&0x80 == 0 { break } } } // Count is encoded in a varint in the next bytes. c := uintptr(0) for off := uint(0); ; off += 7 { x := uintptr(*p) p = add1(p) c |= (x & 0x7F) << off if x&0x80 == 0 { break } } c *= n // now total number of bits to copy // If the number of bits being repeated is small, load them // into a register and use that register for the entire loop // instead of repeatedly reading from memory. // Handling fewer than 8 bits here makes the general loop simpler. // The cutoff is sys.PtrSize*8 - 7 to guarantee that when we add // the pattern to a bit buffer holding at most 7 bits (a partial byte) // it will not overflow. src := dst const maxBits = sys.PtrSize*8 - 7 if n <= maxBits { // Start with bits in output buffer. pattern := bits npattern := nbits // If we need more bits, fetch them from memory. if size == 1 { src = subtract1(src) for npattern < n { pattern <<= 8 pattern |= uintptr(*src) src = subtract1(src) npattern += 8 } } else { src = subtract1(src) for npattern < n { pattern <<= 4 pattern |= uintptr(*src) & 0xf src = subtract1(src) npattern += 4 } } // We started with the whole bit output buffer, // and then we loaded bits from whole bytes. // Either way, we might now have too many instead of too few. // Discard the extra. if npattern > n { pattern >>= npattern - n npattern = n } // Replicate pattern to at most maxBits. if npattern == 1 { // One bit being repeated. // If the bit is 1, make the pattern all 1s. // If the bit is 0, the pattern is already all 0s, // but we can claim that the number of bits // in the word is equal to the number we need (c), // because right shift of bits will zero fill. if pattern == 1 { pattern = 1<8 bits, there will be full bytes to flush // on each iteration. for ; c >= npattern; c -= npattern { bits |= pattern << nbits nbits += npattern if size == 1 { for nbits >= 8 { *dst = uint8(bits) dst = add1(dst) bits >>= 8 nbits -= 8 } } else { for nbits >= 4 { *dst = uint8(bits&0xf | bitScanAll) dst = add1(dst) bits >>= 4 nbits -= 4 } } } // Add final fragment to bit buffer. if c > 0 { pattern &= 1< nbits because n > maxBits and nbits <= 7 if size == 1 { // Leading src fragment. src = subtractb(src, (off+7)/8) if frag := off & 7; frag != 0 { bits |= uintptr(*src) >> (8 - frag) << nbits src = add1(src) nbits += frag c -= frag } // Main loop: load one byte, write another. // The bits are rotating through the bit buffer. for i := c / 8; i > 0; i-- { bits |= uintptr(*src) << nbits src = add1(src) *dst = uint8(bits) dst = add1(dst) bits >>= 8 } // Final src fragment. if c %= 8; c > 0 { bits |= (uintptr(*src) & (1<> (4 - frag) << nbits src = add1(src) nbits += frag c -= frag } // Main loop: load one byte, write another. // The bits are rotating through the bit buffer. for i := c / 4; i > 0; i-- { bits |= (uintptr(*src) & 0xf) << nbits src = add1(src) *dst = uint8(bits&0xf | bitScanAll) dst = add1(dst) bits >>= 4 } // Final src fragment. if c %= 4; c > 0 { bits |= (uintptr(*src) & (1< 0; nbits -= 8 { *dst = uint8(bits) dst = add1(dst) bits >>= 8 } } else { totalBits = (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*4 + nbits nbits += -nbits & 3 for ; nbits > 0; nbits -= 4 { v := bits&0xf | bitScanAll *dst = uint8(v) dst = add1(dst) bits >>= 4 } } return totalBits } // materializeGCProg allocates space for the (1-bit) pointer bitmask // for an object of size ptrdata. Then it fills that space with the // pointer bitmask specified by the program prog. // The bitmask starts at s.startAddr. // The result must be deallocated with dematerializeGCProg. func materializeGCProg(ptrdata uintptr, prog *byte) *mspan { // Each word of ptrdata needs one bit in the bitmap. bitmapBytes := divRoundUp(ptrdata, 8*sys.PtrSize) // Compute the number of pages needed for bitmapBytes. pages := divRoundUp(bitmapBytes, pageSize) s := mheap_.allocManual(pages, spanAllocPtrScalarBits) runGCProg(addb(prog, 4), nil, (*byte)(unsafe.Pointer(s.startAddr)), 1) return s } func dematerializeGCProg(s *mspan) { mheap_.freeManual(s, spanAllocPtrScalarBits) } func dumpGCProg(p *byte) { nptr := 0 for { x := *p p = add1(p) if x == 0 { print("\t", nptr, " end\n") break } if x&0x80 == 0 { print("\t", nptr, " lit ", x, ":") n := int(x+7) / 8 for i := 0; i < n; i++ { print(" ", hex(*p)) p = add1(p) } print("\n") nptr += int(x) } else { nbit := int(x &^ 0x80) if nbit == 0 { for nb := uint(0); ; nb += 7 { x := *p p = add1(p) nbit |= int(x&0x7f) << nb if x&0x80 == 0 { break } } } count := 0 for nb := uint(0); ; nb += 7 { x := *p p = add1(p) count |= int(x&0x7f) << nb if x&0x80 == 0 { break } } print("\t", nptr, " repeat ", nbit, " × ", count, "\n") nptr += nbit * count } } } // Testing. func getgcmaskcb(frame *stkframe, ctxt unsafe.Pointer) bool { target := (*stkframe)(ctxt) if frame.sp <= target.sp && target.sp < frame.varp { *target = *frame return false } return true } // gcbits returns the GC type info for x, for testing. // The result is the bitmap entries (0 or 1), one entry per byte. //go:linkname reflect_gcbits reflect.gcbits func reflect_gcbits(x interface{}) []byte { ret := getgcmask(x) typ := (*ptrtype)(unsafe.Pointer(efaceOf(&x)._type)).elem nptr := typ.ptrdata / sys.PtrSize for uintptr(len(ret)) > nptr && ret[len(ret)-1] == 0 { ret = ret[:len(ret)-1] } return ret } // Returns GC type info for the pointer stored in ep for testing. // If ep points to the stack, only static live information will be returned // (i.e. not for objects which are only dynamically live stack objects). func getgcmask(ep interface{}) (mask []byte) { e := *efaceOf(&ep) p := e.data t := e._type // data or bss for _, datap := range activeModules() { // data if datap.data <= uintptr(p) && uintptr(p) < datap.edata { bitmap := datap.gcdatamask.bytedata n := (*ptrtype)(unsafe.Pointer(t)).elem.size mask = make([]byte, n/sys.PtrSize) for i := uintptr(0); i < n; i += sys.PtrSize { off := (uintptr(p) + i - datap.data) / sys.PtrSize mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 } return } // bss if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss { bitmap := datap.gcbssmask.bytedata n := (*ptrtype)(unsafe.Pointer(t)).elem.size mask = make([]byte, n/sys.PtrSize) for i := uintptr(0); i < n; i += sys.PtrSize { off := (uintptr(p) + i - datap.bss) / sys.PtrSize mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 } return } } // heap if base, s, _ := findObject(uintptr(p), 0, 0); base != 0 { hbits := heapBitsForAddr(base) n := s.elemsize mask = make([]byte, n/sys.PtrSize) for i := uintptr(0); i < n; i += sys.PtrSize { if hbits.isPointer() { mask[i/sys.PtrSize] = 1 } if !hbits.morePointers() { mask = mask[:i/sys.PtrSize] break } hbits = hbits.next() } return } // stack if _g_ := getg(); _g_.m.curg.stack.lo <= uintptr(p) && uintptr(p) < _g_.m.curg.stack.hi { var frame stkframe frame.sp = uintptr(p) _g_ := getg() gentraceback(_g_.m.curg.sched.pc, _g_.m.curg.sched.sp, 0, _g_.m.curg, 0, nil, 1000, getgcmaskcb, noescape(unsafe.Pointer(&frame)), 0) if frame.fn.valid() { locals, _, _ := getStackMap(&frame, nil, false) if locals.n == 0 { return } size := uintptr(locals.n) * sys.PtrSize n := (*ptrtype)(unsafe.Pointer(t)).elem.size mask = make([]byte, n/sys.PtrSize) for i := uintptr(0); i < n; i += sys.PtrSize { off := (uintptr(p) + i - frame.varp + size) / sys.PtrSize mask[i/sys.PtrSize] = locals.ptrbit(off) } } return } // otherwise, not something the GC knows about. // possibly read-only data, like malloc(0). // must not have pointers return }